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Preface

The purpose of this book is to provide a detailed presentation of the
control of underactuated non-linear mechanical systems. Control of
underactuated systems is a very popular research field, since there exist
many applications of underactuated systems in robotics, marine and
aerospace vehicles.

Modelling and control of a series of well-known examples of underac-
tuated mechanical systems are presented in this book. The total energy
of the system and its passivity properties have been extensively used
in the control design. The main goal is the stabilization of controlled
dynamical systems by construction of Lyapunov functions. Simulations
and real applications illustrate the performance of the algorithms on
several experimental platforms.

This book is expected to be used by students and researchers in the
areas of non-linear control systems, mechanical systems, robotics and
control of helicopters.

The book originates from the Ph.D. thesis prepared by the first au-
thor at the University of Technology of Compiégne and supervised by
the second author. It also contains four chapters of individual contribu-
tions on closely related subjects: Chapter 10 (Carlos Aguilar and Roge-
lio Lozano), Chapter 13 (Juan Carlos Avila-Vilchis, Bernard Brogliato
and Rogelio Lozano), Chapter 14 (Robert Mahony and Rogelio Lozano)
and Chapter 15 (Robert Mahony, Tarek Hamel, Alejandro Dzul and Ro-
gelio Lozano).

It would not have been possible to compile the book without the
precious help and the contributions of the following persons that are
gratefully acknowledged here:

e We are specially indebted to Mark W. Spong, with whom we have
closely collaborated under an agreement between CNRS and the
University of Illinois. He contributed to the material presented in
Chapters 5 and 7.
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e We thank Carlos Aguilar, Juan Carlos Avila-Vilchis, Bernard
Brogliato, Alejandro Dzul, Tarek Hamel and Robert Mahony for
their contributions in Chapters 10 and 13-15 .

e We are grateful to Anuradha M. Annaswamy, Joaquin Collado,
Frédéric Mazenc and Kristin Y. Pettersen for fruitful collaboration
on the domain of underactuated mechanical systems.

e We also want to thank D. J. Block from the University of Illinois.
The experimental results contained in Chapter 3 and in Chapter
5 wouldn’t have been possible without his help.

Isabelle Fantoni
Rogelio Lozano
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Chapter 1

Introduction

1.1 Motivation

The motivation for the research presented in this book is to continue the
development of the field of non-linear control theory for mechanical sys-
tems. The development of robots having an autonomous and complex
behavior such as the adaptation to environment changes and uncertain-
ties, planification and execution strategies without human intervention
and the learning ability to improve performances is one of the ultimate
goals in research of robotics. The achievement of such machines could
have a major impact in many fields such as production, stocking and
supervision of dangerous waste, construction and the robotic hollow,
inspection, teleoperation, maintenance of satellites, autonomous vehi-
cles, etc. It clearly appears that most of the problems to be solved to
reach such goals imply control problems. The development of control
techniques is a vital objective for the realization and the creation of
intelligent robots.

This book presents the application of modern non-linear systems
theory to control some important classes of underactuated mechanical
systems. In the eighties, the control of robot manipulators was exten-
sively studied. Several control strategies based on passivity, Lyapunov
theory, feedback linearization, etc. have been developed for the fully
actuated case, i.e. systems with the same number of actuators as de-
grees of freedom. The techniques developed for fully actuated robots
do not apply directly to the case of underactuated non-linear mechani-
cal systems. Underactuated mechanical systems or vehicles are systems
with fewer independent control actuators than degrees of freedom to be
controlled.

INESRtOnNCT RSN 1 - GINComIT0! ffo Bl e flitt: recl Mechanical Systems
@NSPIEEr; Ve agh_gndoneiimited 2 (002
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Pendubot
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T
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Inertia wheel One revolute and two prismatic joints

planar manipulator

Figure 1.1: Examples of underactuated mechanical systems
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Hovercraft

.

Planar vertical take—off and landing aircraft
(PVTOL)

Figure 1.2: Examples of underactuated mechanical systems

In the last few years, there has been major interest in developing
stabilizing algorithms for underactuated mechanical systems. The need
for underactuated algorithms arises in many practical situations, some
of which are enumerated below. The interest comes from the need to
stabilize systems like ships, underwater vehicles, helicopters, aircraft,
airships, hovercrafts, satellites, walking robots, etc., which may be un-
deractuated by design. Actuators are expensive and/or heavy and are
therefore sometimes avoided in a system design. Other systems may
also become underactuated due to actuator failure.

Most models of mechanical systems such as robotic manipulators are
built on the assumption that the individual links or members are rigid.
This is a correct approximation in some cases while in others it is not.
If we take the more realistic non-rigid dynamics into account then all
such models are essentially underactuated.

In aircraft or space applications, equipment weight is of paramount
importance. Space bound rockets have limited rocket payloads, a size-
able portion of which constitutes automatic control equipment. This
has fueled research into underactuated mechanical systems. The idea is
simply to reduce the weight of any robotic manipulator by reducing the
number of motors, which are often the most heavy and unwieldy parts.
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Free floating mobile robots like those used in space and ocean ap-
plications often have robotic manipulators mounted on them. Exam-
ples include collecting samples in submersible vehicles and performing
maintenance operations or debris retrieval in space robots. Close to the
objective where the desired task has to be performed, the primary pro-
pelling devices are usually switched off so that the platform is free float-
ing. Under such conditions, when the robotics manipulator is moved,
the law of conservation dictates that the platform itself will move. So
the system becomes underactuated as a new degree of freedom is added
and the normal control algorithms do not work.

More specific applications also exist such as in the arena of naval
operations, where fuel and rations are supplied to a naval vessel from
a supply ship using a swinging crane. Under a high sea state, the
relative motion of the two vessels becomes important enough to hinder
significantly even the mundane task of loading and unloading. In space
applications, if any one of the motors of a multilinked robotic arm
malfunction while the arm is extended, the only solution is to jettison
the whole assembly. Unless, that is, an underactuated algorithm can
be utilized to retrieve it.

Underactuation may be due to an actuator failure. A hardware so-
lution to actuator failures may be achieved by equipping the vehicle
with redundant actuators. The software option is, on the other hand,
a cost-reducing alternative, since it consists of changing to a control
law that controls the vehicle using only the remaining actuators, when
an actuator failure is detected. Furthermore, the software solution is
weight economical compared to the hardware solution and this can be
important in space and underwater applications. Moreover, cost and
weight considerations can motivate constructors to create underactu-
ated vehicles.

It is thus clear that there is a need to develop new control techniques
applicable to underactuated non-linear mechanical systems.

The research is focused towards obtaining control algorithms for gen-
eral underactuated non-linear mechanical systems. Since this general
objective is difficult to accomplish, we are also interested in stabiliz-
ing particular classes of mechanical systems. To simplify the task, re-
searchers have been studying simple mechanical systems. Some of these
systems represent academic benchmarks and are part of a standard
control laboratory like the inverted pendulum, the rotational inverted
pendulum, the pendubot, the planar manipulator with springs between
links, the pendulum driven by a spinning wheel, the ball and beam,
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and the PVTOL (planar vertical take-off and landing) aircraft. In spite
of the fact that they are simple mechanical plants, they represent a
challenge to the non-linear control community.

The study of the PVTOL aircraft is also important because it repre-
sents a simplified model of a helicopter in the lateral (or longitudinal)
axis. Indeed, if we consider a helicopter for which the yaw and pitch
(or roll) angles are fixed, the resulting system is similar to the PV-
TOL aircraft. Developing control strategies for the PVTOL aircraft
will normally be useful in the control design for helicopters. Chapters
13 through 15 are devoted to modelling and control of helicopter models.

An important remark is the fact that the research on underactu-
ated systems is an extension of the research on non-holonomic systems.
Indeed, non-holonomic systems have constraints on the velocity and
only kinematic equations of the system are considered. Underactuated
systems have constraints on the acceleration, and both kinematics and
dynamics have to be considered in the control design.

In this book, we will give a detailed presentation of the control of
some well-known underactuated non-linear mechanical systems. The
reader will find detailed steps to obtain the Euler-Lagrangian models as
well as various control laws obtained using different approaches based
on Lyapunov theory, passivity, feedback linearization, etc. Real ap-
plications will illustrate the performance of the algorithms on several
experimental platforms.

We have neglected friction in the various inverted pendulum systems
studied in this book. The convergence analysis proposed deals only with
the ideal case in which friction is zero. However, experimental results
have shown that the proposed controller performs appropriately when
the frictional terms are small.

In most of the examples that will be presented, a passivity- or energy-
based approach is used in the design of stabilizing controllers. In fact,
the passivity-based control technique is standard and has extensively
been studied and used in the control community. Indeed, Willems [122]
and Hill & Moylan [37, 38, 39, 40] provided some general notions in the
theory of dissipative systems, in particular the small-gain and passivity
theorems.

Takegaki & Arimoto [113] developed the idea of stabilizing mechan-
ical systems by reshaping the potential energy via feedback and by
adding damping. This is one of the starting points of “passivity-based
control”.

Byrnes et al. [16] in 1991, derived conditions under which a non-
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linear system can be rendered passive via smooth state feedback and
they extended a number of stabilization schemes for global asymptotic
stabilization of certain classes of non-linear systems.

Nijmeijer & Van der Schaft [75] described system theoretic proper-
ties and stabilization of standard Hamiltonian control systems. Then
Maschke, Van der Schaft & Breedvelt [68] introduced generalized Hamil-
tonian control systems as an important class of passive state space sys-
tems and studied the stabilization of such systems. In 1996, Van der
Schaft provided in his lecture notes, published by Springer [117], a very
useful synthesis between classical input-output and closed-loop stabil-
ity theory, in particular the small-gain and passivity theorems, and
presented developments in passivity-based and non-linear H,, control.

It is also important to remark that recently the journal “International
Journal of Robust and Nonlinear Control” has published a special issue
entitled “Control of underactuated nonlinear systems”. In this issue,
a paper by Shiriaev et al. [100] deals with the stabilization of the
upright position of the inverted pendulum system that we will develop
in Chapter 3. This paper gives an extension on some global properties
of the controller that we have proposed in [58] (see also Chapter 3).
This clearly shows the great interest that the subject of this book has
already received from other researchers of the control community.

The last three chapters of this book deal with modelling and control
of helicopters. Helicopters are underactuated systems since they have
in general six degrees of freedom (position (z,y, z), pitch, roll and yaw)
and only four control inputs (pitching, rolling and yaw moments and
the main rotor thrust). Chapter 13 deals with a helicopter mounted on
a platform such that the aircraft can move only vertically and around
the vertical axis. The system has three degrees of freedom and two
inputs. Chapters 14 and 15 deal with helicopters moving freely in a
three-dimensional space. Chapter 14 presents a Lagrangian model of the
helicopter while Chapter 15 deals with a Newtonian approach. Control
laws based on passivity and partial feedback linearization are proposed
for each case.

We believe this book will be of great value for Ph.D. students and re-
searchers in the areas of non-linear control systems, mechanical systems,
robotics and control of helicopters. It will help to acquire the appropri-
ate models of the proposed systems and to handle other underactuated
systems.
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1.2 Outline of the book

Chapter 2 presents general notions and background theory, which will
be used throughout the book.

1.2.1 Energy-based control approaches for several under-
actuated mechanical systems

Chapters 3 to 10 propose a set of underactuated mechanical systems for
which we apply an energy-based control approach. For all the systems,
we take advantage of their passivity properties in order to establish
a control law based on Lyapunov theory. The control objective is to
stabilize systems around a desired position. The illustrative examples
are the following:

e Chapter 3 deals with the inverted pendulum system and the de-
velopment of an energy-based control law. The applicability of the
method is illustrated by means of simulations and experimental re-
sults performed at the University of Illinois at Urbana-Champaign
(USA). This work is also published in [59].

e Chapter 4 is a natural extension of Chapter 3. Indeed, the pro-
posed convey-crane system is intensely based on the inverted pen-
dulum’s equations. Again, an energy-based control approach is
proposed in order to stabilize the convey-crane at its lower equi-
librium position. This work has been presented in [18].

e The pendubot system is introduced in Chapter 5. Experiments
are also given in order to see the performance of the proposed
control law. The presentation of this work can be found in [24].

e In Chapter 6, the rotational inverted pendulum, often called the
Furuta pendulum system, is presented and its energy-based con-
trol law is developed.

e Chapter 7 deals with the pendulum driven by a spinning wheel,
i.e. the reaction wheel. Two different approaches are considered.

e Chapter 8 presents planar underactuated manipulators with
springs between links. A simple control law is presented for such
systems.



8 CHAPTER 1. INTRODUCTION

e Chapter 9 introduces a planar robot with two prismatic and one
revolute (PPR) joints. This example has four degrees of freedom
with only three control inputs. An energy-based control law is
again presented.

e Finally, in Chapter 10, we propose a control law for the ball and
beam system acting on the ball instead of the beam.

The main contribution of the above systems is to exploit their pas-
sivity properties to develop appropriate control laws. Moreover, rig-
orous and complete stability analysis for the closed-loop systems are
presented. Note that the main idea is similar for most of the presented
systems. Therefore, it can be extended to a larger class of underactu-
ated mechanical systems provided that the control law is adapted to
each particular system.

1.2.2 The hovercraft model, the PVTOL aircraft and the
helicopter

From Chapters 11 to 15, we study systems that have a direct real appli-
cation, such as hovercrafts, aircraft and helicopters. Control laws have
been developed using simplified models of such systems.

e Chapter 11 deals with a simplified model of a ship that can also
be regarded as a hovercraft model. We propose different control
strategies based on Lyapunov theory.

e In Chapter 12, we present the model of a planar vertical take-off
and landing (PVTOL) aircraft that is a simplified aircraft. We
propose a control strategy by construction of a Lyapunov function
using the forwarding technique.

The last three chapters present several methodologies for modelling
a helicopter and different control procedures are proposed based on
Lyapunov theory.

e Chapter 13 introduces a Lagrangian model of a VARIO scale
model helicopter mounted on a platform and a passivity-based
control strategy. The proposed control strategy is based on the
use of non-linear controllers, which ensure asymptotic tracking of
suitable desired trajectories.
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e In Chapter 14, a Lagrangian model of the dynamics of a simplified
helicopter permits a Lyapunov design of a unified path tracking
control algorithm.

e Finally, Chapter 15 presents a Newtonian helicopter model and a
robust control design based on robust backstepping techniques is
proposed. The control law design is based on an approximation of
the system obtained by ignoring the small body forces associated
with the torque control.




Chapter 2

Theoretical preliminaries

The purpose of this chapter is to present some definitions and back-
ground theory that will be used throughout this book. We will first
introduce some important theorems based on Lyapunov theory. We
will give some notions and basic concepts of passivity. Then, we will
recall a necessary condition for the existence of a continuously stabiliz-
ing control law for non-linear systems, often referred to as Brockett’s
necessary condition. The definitions of non-holonomic systems, under-
actuated systems and a homoclinic orbit are also given.

2.1 Lyapunov stability
Consider the autonomous system
i = () (2.1)

where f : D — IR"™ is a locally Lipschitz map from a domain D C IR"
into IR™. We suppose that the origin z = 0 is an equilibrium point of
(2.1), which satisfies

f(0)=0

Lyapunov theory is the fundamental tool for stability analysis of dy-
namic systems. The following definitions and theorems are used to
characterize and study the stability of the origin (see Khalil [46]).

Definition 2.1 (Khalil, 1996, Definition 3.1) The equilibrium point
z = 0 of system (2.1) is

11
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e stable, if for each € > 0, there is § = §(e) > 0 such that

l(0)| <6 = [lz(®)]| <€, VE20

e unstable, if not stable
e asymptotically stable, if it is stable and é can be chosen such that

l2(0)} < & = lim z(¢) =0

e exponentially stable, if there exist two strictly positive numbers
a and X independent of time and initial conditions such that

()]l < allz(0)]|exp(=At)  VE>0 (22)
in some ball around the origin. ]

The above definitions correspond to local properties of the system
around the equilibrium point. The above stability concepts become
global when their corresponding conditions are satisfied for any initial
state.

2.1.1 Lyapunov direct method

Let us consider the following definitions.

Definition 2.2 ((Semi-)definiteness) A scalar continuous function
V(z) is said to be locally positive (semi-) definite if V(0) = 0 and
V(z) >0 (V(z) > 0) for z # 0. Similarly, V(z) is said to be negative
(semi-)definite if —V (z) is positive (semi-)definite. |

Definition 2.3 (Lyapunov function) V(z) is called a Lyapunov
function for the system (2.1) if, in a ball B containing the origin, V(z)
is positive definite and has continuous partial derivatives, and if its
time derivative along the solutions of (2.1) is negative semi-definite, i.e.

V(z) = (0V/dz)f(z) <O0. |

The following theorems can be used for local and global analysis of
stability, respectively.

Theorem 2.1 (Local stability) The equilibrium point 0 of system
(2.1) is_(asymptotically) stable in_a ball B if there exists a scalar func-
tion V (z) with continuous derivatives such that V(z) is positive definite
and V(z) is negative semi-definite (negative definite) in the ball B. W
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Theorem 2.2 (Global stability) The equilibrium point of system
(2.1) is globally asymptotically stable if there exists a scalar function
V(z) with continuous first order derivatives such that V(z) is positive
definite, V(z) is negative definite and V(z) is radially unbounded, i.e.
V(z) = o0 as ||z|| = oo. [ ]

Krasovskii-LaSalle’s invariant set theorem

Krasovskii-LaSalle’s results extend the stability analysis of the previous
theorems when V is only negative semi-definite. They are stated as
follows.

Definition 2.4 (Invariant set) A set S is an invariant set for a dy-
namic system if every trajectory starting in S remains in S. ]

Invariant sets include equilibrium points, limit cycles, as well as any
trajectory of an autonomous system.

Theorem 2.3 (LaSalle’s invariance principle) (Khalil, 1996,
Theorem 3.4) Let Q0 be a compact (closed and bounded) set with the
property that every solution of the system (2.1) that starts in Q remains
in Q for all future time. Let V : @ — IR be a continuously differentiable
function such that V(z) < 0 in Q. Let E be the set of all points in
where V(z) = 0. Let M be the largest invariant set in E. Then, every
solution starting in §) approaches M as t — oo. [ |

When V(z) is positive definite, the following two corollaries extend
Theorems 2.1 and 2.2.

Corollary 2.1 (Barbashin-LaSalle) (Khalil, 1996, Corollary 3.1)
Let £ = 0 be an equilibrium point for (2.1). Let V : D — IR be a
continuously differentiable positive definite function on a neighborhood
D of x =0, such that V(z) <0 in D. Let S = {z € D|V(z) = 0}, and
suppose that no solution can stay forever in S, other than the trivial
solution. Then, the origin is asymptotically stable. |

Corollary 2.2 (Krasovskii-LaSalle) (Khalil, 1996, Corollary 3.2)
Let £ = 0 be an equilibrium point for (2.1). Let V : IR® — IR be a
continuously differentiable, radially unbounded, positive definite func-
tion_such that V(z) < 0 for all z € IR". Let S = {x € R"|V(z) = 0},
and suppose that no solution can stay forever in S, other than the trivial
solution. Then, the origin is globally asymptotically stable. |
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When V (z) is negative definite, S = {0}. Then, Corollaries 2.1 and 2.2
coincide with Theorems 2.1 and 2.2, respectively.

2.2 Passivity and dissipativity

Consider the non-linear system

=f(x)+g9(x)u
y=h(x)+j(x)u (2.3)

»

I
[y
¥

x € R", u,y € R™, f,g,h,j are smooth. f(0) = h(0) = 0 (see Lozano
[56]). Let us call w = w(u,y) the supply rate, such that Vu, Vz(0)

t
/ |lw(s)|ds < oo te RY
0

i.e. locally integrable.

Definition 2.5 (Dissipative system) The system (2.3) is said to
be dissipative if there exists a storage function V(z) > 0 such that

Vu, Vz(0)

¢
V() - V©) < [ w()ds
0
The latter is called a dissipation inequality. |

It means that the storage energy function V(z(t)) at a future time ¢
is not bigger than the sum of the available storage function V' (z(0)) at
an initial time O plus the total energy fot w(s)ds supplied to the system
from the external sources in the interval [0,¢]. There is no internal
creation of energy.

Passive systems represent an important subset of dissipative systems.

Definition 2.6 A system with input v and output y where u(t),y(t) €
IR" is passive if there is a constant 3 such that

/ . y"(u(t)dt > B (2.4)
0
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for all functions u and all T > 0. If, in addition, there are constants
6 > 0 and € > 0 such that

T T T
/ yT (t)u(t)dt > B + 5/ uT (t)u(t)dt + e/ yT(t)y(t)dt  (2.5)
0 0 0

for all functions u, and all T > 0, then the system is input strictly
passive if § > 0, output strictly passive if ¢ > 0, and very strictly
passive if § >0 and ¢ > 0 |

Obviously 8 < 0 as the inequality is to be valid for all functions
u and in particular the control u(t) = 0 for all ¢ > 0 , which gives

0= [ yT(t)u(t)dt > B.

Theorem 2.4 Assume that there is a continuous function V(t) > 0
such that

T
V(T) - V(0) < /O y(t)Tu(t)dt (2.6)

for all functions u, for all T > 0 and all V(0). Then, the system with
input u(t) and output y(t) is passive. Assume, in addition, that there
are constants 6 > 0 and € > 0 such that

T T T
V(T) - V(0) g/o yT (t)u(t)dt —5/0 uT (t)u(t)dt — 6/0 yT (t)y(t)dt
(2.7)

for all functions u, for all T > 0 and all V(0). Then, the system is
input strictly passive if & > 0, output strictly passive if € > 0, and very
strictly passive if 6 > 0 and € > 0 such that the inequality holds. |

2.3 Stabilization

The following theorem gives a necessary condition for the existence of
a continuously differentiable control law for non-linear systems. It was
presented by Brockett [13] (1983) for C! pure-state feedback laws.

Theorem 2.5 Let £ = f(z,u) be given with f(z,0) = 0 and f(.,.)
continuously differentiable in a neighborhood of (zy,0). A necessary
condition for the ezistence of a continuously differentiable control law
which makes (zg,0) asymptotically stable is that:
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(i) The linearized system should have no uncontrollable modes asso-
ciated with eigenvalues whose real part is positive.

(ii) There exists a neighborhood N of (z¢,0) such that for each { € N
there ezxists a control uc(.) defined on [0, 00[ such that this control
steers the solution of & = f(z,u¢) fromz =( att =10 to z = =z

at t = oo.
(111) The mapping v : A x R™ — IR"™ defined by v : (z,u) — f(z,u)
should be onto an open set containing 0. ]

The first condition refers to the rank condition of a linear control sys-
tem. Note that in the linear case, the rank condition is necessary and
sufficient for a linear system £ = Az + Bu to be controllable and to
provide the existence of a continuously differentiable control law for the
linear system.

The second condition refers to the controllability property in the
nonlinear case. On the other hand, this condition is not sufficient since
we want a control law with some smoothness. In general, we need
something more than just a controllability condition. Therefore, we
need to introduce condition (iii), which corresponds to the necessary
condition of this theorem.

The third condition means that the mapping should be locally sur-
jective or that the image of the mapping (z,u) — f(z,u), for z and u
arbitrarily close to 0, should contain a neighborhood of the origin.

To make this more clear, let us consider the following example:

T = u=e
Z = Yyu-—IU=E¢3

The question to ask is if there exists a continuous control law (u,v) =
(u(z,y,2),v(z,y, z)) that makes the origin asymptotically stable for the
above system. The third condition of Brockett’s theorem means that
the system equations should contain a solution (z,y, z,u,v) for every
g;(1 = 1,2, 3) in a neighborhood of the origin. This is not the case here,
since the system does not have a solution for €3 # 0 and e; = 0, 1 = 0.
Contrary to the above, the following example satisfies the third con-
dition
= u=£&
y = v=¢

zZ = xy=c¢3



2.4. NON-HOLONOMIC SYSTEMS 17

Therefore, for this particular system there exists a continuous control
law, which makes the origin asymptotically stable.

2.4 Non-holonomic systems

Definition 2.7 (Holonomic systems) (Goldstein [33]) Consider a
system of generalized coordinates g

§=1f(q,q,u) (2.8)

where f(.) is the vector field representing the dynamics and u is a vector
of external generalized inputs. Suppose that some constraints limit the
motion of the system. If the conditions of constraint can be expressed
as equations connecting the coordinates (and possibly the time) having
the form

h(g,t) =0 (2.9)

then the constraints are said to be holonomic. This type of constraint
is a so-called holonomic constraint, since it can be integrated. ]

A simple and suitable example illustrates well the concept of holo-
nomic systems and was proposed by Lefeber [50]. Let us consider the
system

i‘l = ur
To = —ur (2.10)

where (z1,z2) is the state and u is the input. This system contains a
constraint on the velocities as follows

121 + T2 =0 (2.11)

Since this constraint can be integrated to obtain

1 1
5:3% + §z§ =c (2.12)
where c is a constant, the constraint (2.11) is called a holonomic con-

straint.

Definition 2.8 (Non-holonomic systems) (Goldstein [33]). On the
other hand, when it is not possible to reduce them further by means
of equations of constraint of the form (2.9), they are then called non-
holonomic. With non-holonomic systems, the generalized coordinates
are not independent of each other. |
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Let us consider the kinematic equations of a vehicle

T = wvcosf
= wsinf (2.13)

The constraint on the velocities of the model is given by
Zsinf —ycosf =0 (2.14)

However, contrary to (2.11), the constraint (2.14) cannot be integrated,
i.e. the constraint (2.14) cannot be written as a time derivative of some
function of the state. It is called a non-holonomic constraint.

2.5 Underactuated systems

In this book, we will simply define an underactuated system as one hav-
ing less control inputs than degrees of freedom. The precise definition
is given below. In some underactuated systems, the lack of actuation
on certain directions can be interpreted as constraints on the accelera-
tion. This is in fact the case for the underactuated hovercraft, treated
in Chapter 11, for which the lateral acceleration is nil.

Definition 2.9 (Underactuated systems) Consider systems that
can be written as

d= f(g,9) + G(q)u (2.15)

where ¢ is the state vector of independent generalized coordinates, f(.)
is the vector field representing the dynamics of the systems, ¢ is the
generalized velocity vector, G is the input matrix, and u is a vector of
generalized force inputs. The dimension of ¢ is defined as the degrees of
freedom of (2.15). System (2.15) is said to be underactuated if the exter-
nal generalized forces are not able to command instantaneous accelera-
tions in all directions in the configuration space, i.e. rank(G) < dim(q).

|

This definition is connected to the one used by Oriolo and Nakamura
[80], which says that underactuated systems are systems with fewer
independent control actuators than degrees of freedom to be controlled.

Several examples of underactuated systems will be considered in this
book. In order to illustrate the above definition, let us consider the
model of the pendubot system (see Figure 5.1), which will be developed
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in Chapter 5. The dynamic equations of the system in standard form
are given by

D(q)§+C(g,9)g+9(q) =T (2.16)
where
q 01 + 62 +203cosqy G2 + 03 cos go
_ — 2.17
1 [ q2 ] bia) [ 62 + 65 cos g2 2 (2.17)

o _ | —63sin(g2) g2 —03sin(g2) g2 — O3sin(g2) ¢1

049 cos q1 + 059 cos (q1+92) } [ n }
_ d = 2.19
9(a) [ 059 cos (q1+42) R 1)

In this system, there is only one actuator acting on the first link (i.e.
the angle ¢;), while the second link (i.e. the angle ¢3) is free. Indeed,
in the vector 7, there is only one term 7, on the first line. Therefore,
this system is underactuated since it has two degrees of freedom with
only one actuator.

Remark 2.1 Let us note that for the case of the mobile robot in kine-
matic equations (2.13) the generalized coordinates are (z,y,0) and are
of three-dimensional while the system has two control inputs (the for-
ward acceleration and the angular momentum). Thus, the mobile robot
1s an underactuated system in view of Definition 2.9. Actually as shown
in equation (2.14), the generalized coordinate components are not inde-
pendent. This comes from the fact that the system cannot move later-
ally. Furthermore, an actuator to move the system laterally is beside
the point. Note, however, that in this case there are only two degrees of
freedom to be controlled: the forward (or backward) displacement and
the angular position. In some sense, the system is fully actuated. This
shows the limitations of Definition 2.9. |

2.6 Homoclinic orbit

The notions and examples developed in this section are related to the
book of Jackson [44]. Let us consider autonomous systems of the form

= Bl e z € IR"  (autonomous) (2.20)
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The solutions of (2.20) involving different initial conditions generate the
family of oriented phase curves in the phase space, which is called the
phase portrait of the system. The phase portrait consists of oriented
curves through all points of the phase space, where the functions F(z;c)
in (2.20) are defined. These curves are called trajectories or orbits.

One important example is the limit cycle, which is a closed (periodic)
orbit, whose neighboring orbits tend asymptotically towards (or away)
from it.

Definition 2.10 (Homoclinic orbit) A homoclinic orbit is a single
orbit where a stable manifold and an unstable manifold intersect. This
orbit leaves the saddle point in one direction, and returns in another
direction. It converges to the same saddle point. |

The example of a ball rolling without friction on a curved surface
with maxima of different heights is a simple example of a homoclinic
orbit. In this example, there is a single orbit that converges to the same
saddle point both when ¢ — 400 and when ¢t — —oo. This situation
is illustrated in Figure 2.1, where the height of the surface is shown in

(a).

z

()

> .

Homoclinic
orbit

"

(b)

Figure 2.1: Example of a homoclinic orbit



Chapter 3

The cart-pole system

3.1 Introduction

The inverted pendulum is one of the most popular laboratory experi-
ments used for illustrating non-linear control techniques. This system
is motivated by applications such as the control of rockets and the anti-
seismic control of buildings.

The swinging pendulum on a cart consists of a pole whose pivot
point is mounted on a cart, which is a movable platform. The pendu-
lum is free to swing about its pivot point and it has no direct control
actuation. The cart can move horizontally perpendicular to the axis of
rotation of the pendulum and is actuated by a force applied to it in the
same direction. The control objective is to bring the pole to the up-
per unstable equilibrium position by moving the cart on the horizontal
plane. Since the angular acceleration of the pole cannot be controlled
directly, the inverted pendulum is an underactuated mechanical system.
Therefore, the techniques developed for fully actuated mechanical robot
manipulators cannot be used to control the inverted pendulum.

The cart-pole system is also known because several of its properties
prohibit the use of standard non-linear control techniques and make it
an interesting research problem. Indeed, the relative degree [42] of the
system is not constant (when the output is chosen to be the swinging en-
ergy of the pendulum), which means that the system is not input-output
linearizable. Moreover, Jakubczyk and Respondek [45] have shown that
the inverted pendulum is not feedback linearizable. An additional diffi-
culty comes from the fact that when the pendulum swings past the hor-
izontal, the controllability distribution does not have a constant rank
and so the system loses controllability as the pendulum swings past its

21
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horizontal configuration.

Different interesting controllers exist in the literature. Wei et al.
[121] presented a control strategy decomposed in a sequence of steps
to bring the pendulum from its lower stable equilibrium position to its
unstable equilibrium position, when the cart has a restricted horizontal
travel. Chung and Hauser [17] proposed a non-linear state feedback
control law to regulate the cart position as well as the swinging energy
of the pendulum. The resulting closed-loop system possesses a locally
stable periodic orbit, though the region of attraction has not been de-
termined. Lin et al. [55] proposed a linear controller that stabilizes
the linearized model of the inverted pendulum, having restricted travel.
The region of attraction when the controller is applied to the non-linear
model of the inverted pendulum is still to be determined. Fradkov [27]
proposed a swinging control strategy of non-linear oscillations. His ap-
proach can, in particular, be applied to stabilize an inverted pendulum.
Another interesting approach to swing up a pendulum by energy con-
trol is given by Astrom and Furuta [4]. Note that in [27] and [4], the
model does not include the cart displacement. Mazenc and Praly [72]
presented a control law based on the technique consisting of adding
integrators. Their technique can be used to stabilize the inverted pen-
dulum in its upper equilibrium position when the pendulum is initially
above the horizontal plane. Contrary to other strategies, their approach
is such that the cart displacement converges to zero. Praly [86], Spong
and Praly [109] proposed a strategy to control the inverted pendulum
by swinging it up to its unstable equilibrium position. The stability
analysis is carried out by using a Lyapunov technique. Note that as
a starting point, they used a simplified system that results from the
application of partial feedback linearization. In 1999, Olfati-Saber [77]
considered stabilization of a special class of cascade non-linear systems
consisting of a non-linear subsystem in cascade with a double integrator
system. He developed fixed point backstepping procedures for global
and semi-global stabilization of this special class of cascade non-linear
systems. He demonstrated a reduction strategy by applying his theoret-
ical results to stabilization of the cart-pole system to a point equilibrium
over the upper half plane. Semi-global stabilization is achieved using
fixed point controllers.

The stabilization algorithm that we propose, is inspired by the work
in [86] and [109]. The system stability is likewise demonstrated using
Lyapunov analysis but, in contrast to the last authors, the controller
is designed directly without partial feedback linearization. The differ-
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ence relies also on the fact that in the present approach, the control
algorithm is obtained by considering the total energy of the inverted
pendulum. The inherent non-linearities of the system are not canceled
before the control design. This simplifies the closed-loop stability anal-
ysis and renders the technique potentially applicable to a wider class
of underactuated mechanical systems like the pendubot (see [24] and
Chapter 5), the planar manipulators with springs between the links us-
ing a single actuator (see [21] and Chapter 8) and the Furuta pendulum
(see Chapter 6). The control algorithm as well as the convergence anal-
ysis turns out to be very simple as compared to the existing control
strategies.

This chapter is organized as follows. In Section 3.2, the model of
the inverted pendulum system is given. Section 3.3 presents the pas-
sivity properties of the system. In Section 3.4, the controllability of the
linearized system is studied. Section 3.5 deals with the stabilization
of the system around its homoclinic orbit using an energy approach.
Section 3.6 presents the stability analysis of the proposed control law.
The performance of the control law is exposed in a simulation example
and in real-time experiments, in Sections 3.7 and 3.8. Finally, Section
3.9 gives some conclusions and remarks.

3.2 Model derivation

In this section, the mathematical model of the cart and pendulum sys-
tem as shown in Figure 3.1 is derived using both Newton’s second law
and the Euler-Lagrange formulation. We will consider the standard
assumptions, i.e. no friction, no dissipative forces, etc.

M : Mass of the cart

m : Mass of the pendulum

l : Distance from the pivot point to the center
of gravity of the pendulum

I : [Inertia of the pendulum about its center of gravity

g Acceleration due to gravity

xz : Distance of the cart’s center of mass from its initial
position

0 Angle that the pendulum makes with the vertical

f : Force applied on the cart
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Figure 3.1: The cart pendulum system

3.2.1 System model using Newton’s second law
The coordinates of the pendulum’s center of mass (z¢,yg) are

zg = x+1lsinf
yg = lcosf

Applying Newton’s second law in the x direction we get
d’z + mdzccg

dt? dt?

d*z d?

= Mgﬁ+mﬁ(z+151n0)

= Mdi+m<:i+licos09)

f =M

dt
= Mz + mi+ml (cos 06 — sin 692)

= (M +m)& —ml (sin6) 6 + ml (cos 6) 6 (3.1)
Let us now apply Newton’s second law to the rotational motion. Recall
ndulum is I. The angular momen-
d of terms involving rotation about
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a fixed axis. While the pendulum rotates about its center of mass, the
angular momentum is simply I6. Since the pendulum rotates about the
pivot point, a second term due to the distance between the center of
mass and the pivot appears. Therefore the angular momentum becomes
My = (I +ml?)6.

The rotational motion of the pendulum involves two forces: the force
due to gravity and the force due to the acceleration of the cart. Indeed,
since the cart is moving, it applies a force on the pendulum. The mo-
ment of the force due to gravity is mgl sin # and the moment of the force
due to the acceleration of the cart is —mzl cos 6.

Newton’s second law states that the time derivative of the angular
momentum is equal to the moment of the forces applied on the system.
Therefore, we obtain

(I +mi?)8 = mglsin® — mli cos 6 (3.2)

Finally, Equations (3.1) and (3.2) describe the dynamic behavior of the
system.

3.2.2 [Euler-Lagrange’s equations

We first present the kinetic and potential energies, which are used to
compute the Lagrangian function. The kinetic energy of the cart is
. . -2
K, = MQ’”Z. The kinetic energy of the pendulum is Ky = %ﬁ + He
I0? Where zg = z + lsinf and yg = lcos . The total kinetic energy is

2
then

1 . 1 .
K =Ky + Ky = o (M + m)z? + mlz0 cos 6 + ST+ mi?)6?

The total potential energy is P = mgl(cos@ — 1). The Lagrangian
function is given by

L = K-P
1 : .
L = §(M + m)a? + mili cos O + %(I + mi?)6? — mgl(cos g — 1)

The corresponding equations of motion are derived using Lagrange’s
equations

% (5 @) 5 i =+ (33)
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where ¢ = (q1,---9n )T represents the generalized variables, one for each
degree of freedom of the system, 7 = (mp, ...,Tn)T denotes forces that
are externally applied to the system.

In our case, the generalized variables are z and 0, i.e. ¢ = (z,6
We therefore have

.

= (M +m)&+mifcosf
0
= mlicosf+ (I +ml?)é

= mglsinf — mlifsin@

SISEIISRSISIIS
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From Lagrange’s equations (3.3), we finally obtain the equations of
motion (3.1) and (3.2).
In the following, we will assume that the inertia of the pendulum
is negligible, so that we will cancel it from Equations (3.1) and (3.2).
Note that it could be included in the model and in the control law.
The system can be written in standard form

M(q)§+C(g,4)i+G(q) =7 (3.4)
where
|z | M+m mlcos6
1= [ 0 ] M(q) = [ micos§  mi? ] (3.5)
: 0 —misin6f
Clg,9) = [ 0 0 ] (3.6)
_ 0 _|f
G(q) = [ —mglsinf ] and 7= [ 0 ] (3.7)
Note that M(q) is symmetric and
2 _ 0272, 2
)yml® — m*l“cos*6 (3.8)

+ m?21%sin%6 > 0
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Therefore, M(q) is positive definite for all g. From (3.5) and (3.6), it
follows that

0 ml sin 09

M-20 = —ml sin 08 0

(3.9)

which is a skew-symmetric matrix. An important property of skew-
symmetric matrices, which will be used in establishing the passivity
property of the inverted pendulum, is

2ZF(M(q) —2C(q,4))z=0 Vze R? (3.10)

The potential energy of the pendulum can be defined as P = mgl(cos 6 —
1). Note that P is related to G(q) as follows

60 = 5 = | _matsing | (3.1)

3.3 Passivity of the inverted pendulum

The total energy of the cart-pole system is given by

(3.12)
4 M(a)i + mal(cos0 - 1)

Therefore, from (3.4)-(3.6), (3.7), (3.9)-(3.11) we obtain
E =¢"M(q)j+ 3¢"M(q)d + ¢"G(q)

=¢'(-Cq—-G+1+1iMg) +¢7G (3.13)
=¢Tr=af

Integrating both sides of the above equation, we obtain

Jy&fdt

E(t) - E(0)

> “omgl - E(0) (3.14)

input and = as output is passive.
he system (3.4) has a subset of two
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equilibrium points; (z,,6,6) = (%,0,0,0) is an unstable equilibrium
point and (z,%,6,0) = (x,0,7,0) is a stable equilibrium point. The
total energy F(q,q) is equal to 0 for the unstable equilibrium point and
to —2mgl for the stable equilibrium point. The control objective is to
stabilize the system around its unstable equilibrium point, i.e. to bring
the pendulum to its upper position and the cart displacement to zero
simultaneously.

3.4 Controllability of the linearized model

When the pendulum is in a neighborhood of its top unstable equilibrium
position, it is a well-known fact that a linear controller can satisfacto-
rily stabilize the pendulum. In order to implement a balancing linear
controller, the general non-linear differential equations (3.4) have to be
linearized about the top equilibrium position and the resulting system
has to be controllable. Let us therefore compute the rank of the con-
trollability matrix. The general non-linear equations are given by (see

(34))
r = M-{—-_WILSTI;QE [m sin 9(192 — g Cos 9) + f]
= m [—m102 sinfcosf + (M + m)gsinf — fcos@]
(3.15)

Linearizing the non-linear equations about the top unstable equilibrium
point, we obtain as a resulting linear system

T 010 0 T 0
d | & 00 -2 0 @ L
— — M —
Zleol=100 o0 1{lelT]o f=AX+Bf
0 M+m ) 1
6 0 0 WMbmg o || g -
with obvious notation. We then have
0 L 0
L 0 mg
B=| M , AB= 71 |, A’B= A{;l ,
0 —m7
c 0 _ (M+m)g
IM ME
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M
0 g°
3o _ 201 43R) —
A°B = ‘(A{Lm)g and det (B|AB|A*B|A’B) A
0

Thus, the linearized system is controllable. Therefore, a full state feed-
back control law f = —KT X with an appropriate gain vector K is able
to successfully stabilize the system to its unstable equilibrium position.

3.5 Stabilizing control law

3.5.1 The homoclinic orbit

Let us first note that in view of (3.12) and (3.5), if £ = 0 and F(q,q) = 0,
then

%ml292 = mgl(1 — cos6) (3.16)
The above equation defines a very particular trajectory that corre-
sponds to a homoclinic orbit. Note that § = 0 only when 6 = 0. This
means that the pendulum angular position moves clockwise or counter-
clockwise until it reaches the equilibrium point (,8) = (0,0). Thus our
objective can be reached if the system can be brought to the orbit (3.16)
forz = 0,z = 0 and F = 0. Bringing the system to this homoclinic orbit
solves the problem of “swinging up” the pendulum. In order to balance
the pendulum at the upper equilibrium position, the control must even-
tually be switched to a controller that guarantees (local) asymptotic
stability of this equilibrium [106]. By guaranteeing convergence to the
above homoclinic orbit, we guarantee that the trajectory will enter the
basin of attraction of any linear balancing controller.

3.5.2 Stabilization around the homoclinic orbit

The passivity property of the system suggests the use of the total energy
E in (3.12) in the controller design. Since we wish to bring to zero z, z
and F, we propose the following Lyapunov function candidate

. k . ky . ke
V(g,q) = TEJ’*J(q,q)2 - -2—932 + —2~w2 (3.17)
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where kg, k, and k; are strictly positive constants. Note that V (g, q)
is a positive semi-definite function. Differentiating V' and using (3.13),
we obtain

V =kgEE + ki + kyzi
= kgEif + kyii + kyzd (3.18)
= z(kgEf + kyZ + k;)

Let us now compute Z from (3.4). The inverse of M(q) can be obtained
from (3.5), (3.6) and (3.8) and is given by

1 ml? —mlcos
-1 _
= det(M) [ _micos§ M+m ] (3.19)
with det(M) = ml?(M + msin? 0). Therefore, we have
il _ et~ ([ © m21%0 sin 0 &
6|~ 1 0 —m22fsinfcosd | | 6
4 —m?l%2gsinfcos 6 ml?f
(M + m)mglsin@ —mlf cos@
Thus, £ can be written as
. 1 . :
Y ST [m sin (162 — g cos ) + f] (3.20)

Introducing the above in (3.18), one has

ky ) k,m sin9(10.2 — gcos®) .
M + msin?0 M + msin®0 ‘

V=g [f (kEE +
(3.21)

We propose a control law such that

-2
k k,msin8(l0 — gcosf .
d (kEE " . ) = M i msin290 : koo = —kst

M + msin26

(3.22)
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V = —ksi? (3.23)

Note that other functions f(z) such that £f(z) > 0 are also possible.
The control law in (3.22) will have no singularities, provided that

k
kgE + ——-t 0 3.24
( Bl M+msin20> 7 ( )

Note from (3.12) that E > —2mgl. Thus, (3.24) always holds if the
following inequality is satisfied

ky

> kg(2mgl 3.25
maxg(M + msin? 9) £(2mgl) (3:25)

This gives the following lower bound for 7’3;

k
— > 2mgl(M + m) (3.26)
ke

Note that when using the control law (3.22), the pendulum can get
stuck at the (lower) stable equilibrium point, (z,%,8,6) = (0,0,,0).
In order to avoid this singular point, which occurs when £ = —2mgl
(see (3.12)), we require

|E| < ¢ =2mgl (3.27)

Since V is a non-increasing function (see (3.23)), (3.27) will hold if the
initial conditions are such that

< kp— (3.28)

action as will be shown in the next
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3.5.3 Domain of attraction

Condition (3.28) imposes bounds on the initial energy of the system.
Note that the potential energy P = mgl(cosé — 1) lies between —2mgl
and 0. This means that the initial kinetic energy should belong to
[0, ¢ + 2mgl).

Note also that the initial position of the cart z(0) is arbitrary, since
we can always choose an appropriate value for k; in V' (3.17). If z(0)
is large, we should choose a small k;. The convergence rate of the
algorithm may, however, decrease when k, is small.

Note that when the initial kinetic energy K (gq(0),¢(0)) is zero, the
initial angular position 6(0) should belong to (—m, 7). This means that
the only forbidden point is §(0) = m. When the initial kinetic energy
K (g(0),4¢(0)) is different from zero, i.e. K(g(0),¢(0)) belongs to (0,c +
2mgl) (see (3.27) and (3.28)), then there are less restrictions on the
initial angular position 6(0). In particular, #(0) can even be pointing
downwards, i.e. 8 = 7 provided that K(q(0),¢(0)) is not zero.

Despite the fact that our controller is local, its basin of attraction is
far from small. The simulation example and the real-time experiments
will show this feature.

For future use we will rewrite the control law f from (3.22) as

kymsing (gcos6 — 16%) = (M + msin®0) (kyz + ksit)
f= P — (3.29)
v + (M + msin 9) kgE

3.6 Stability analysis

The stability analysis will be based on LaSalle’s invariance theorem
(see for instance [46], page 117).

First, we will reformulate the system, as follows. Since cosf and
sin @ are bounded functions, we can define z as

T 21

Z zZ9

z=1 cosf | = | z;
sin 6 Z4
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The system (3.4)-(3.7) can be written as

21 = 2z

2'3 = 2425

Z4 = 2325 (3.30)
. -1
Z2 _ M+m mlzs f

2] = e ] (8] 331
10 —mlzyzs z2 | _ 0
0 0 z5 —mglzy

The energy E (3.12) is given by

T
E= 2 [ z5 ] [ mlzs ml? ] [ 2 ] +mgl (z3 — 1) (3.32)

The Lyapunov function candidate (3.17) becomes

_kE 2 kv o Kz o
V—2E+222+221 (3.33)

The derivative of V is then
V = zo(kgEf + ky22 + ky21) (3.34)

and the control f (3.29) is written as

_ k‘va4 (923 - lz52) - (M + mz42) (k,,.zl + k522)

f ky + (M + mz42) kg E (3:35)

which leads to
V = —ksz? (3.36)

Introducing (3.35) into (3.30)-(3.31) we obtain a closed-loop system of
the form 2 = F'(z). In order to apply LaSalle ‘s theorem, we are required
to define a compact (closed and bounded) set © with the property that
every solution of the system z = F'(z) that starts in {2 remains in Q for
all future time. Since V'(z1, 22, 23, 24, z5) in (3.33) is a non-increasing
function, (see (3.36)), then z1, 23 and z5 are bounded. Note that z3 and

z4 are also bounded.
O _1a

(21,22, 23,24, 25) < V(2(0)) }
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Therefore, the solutions of the closed-loop system z = F(z) remain
inside a compact set 2 that is defined by the initial value of z. Let
I' be the set of all points in Q such that V(z) = 0. Let M be the
largest invariant set in I'. LaSalle 's theorem ensures that every solution
starting in Q2 approaches M as t — co. Let us now compute the largest
invariant set M in I'.

In the set I' (see (3.36)), V = 0 and z, = 0, which implies that 2z
and V are constant. From (3.33), it follows that F is also constant.
Using (3.31), the expression of z; becomes

1

Zp = ————
M+mzf

[mazy (122 - 923) + f] (3.37)

From (3.37) and (3.35), it follows that the control law has been chosen
such that

—kszo = kpEf + kyZo + ko zq (3.38)

From the above equation, we conclude that Ef is constant in I". Since
E is also constant, we either have a) E =0 or b) E # 0.

e Case a: If F =0, then from (3.38) z; =0 (i.e. z =0). Note that
f in (3.35) is bounded in view of (3.25)-(3.28). Recall that E =0
means that the trajectories are in the homoclinic orbit (3.16). In
this case, we conclude that z, £, and F converge to zero. Note
that if £ = 0 then f does not necessarily converge to zero.

e Case b: If E # 0, since Ff is constant, then the control input f
is also constant. However, a force input f that is constant and
different from zero would lead us to a contradiction. We will give
below a mathematical proof of the fact that f =0 in I'.

Proof 3.1 We will prove that when zo = 0, E is constant and # 0, and
f is constant, f should be zero. From (3.31), we get

mlzszs — mlzsizy = f (3.39)
mi’zs.—mglzy = 0 (3.40)

Moreover, the energy E (3.32) is constant and given by
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1
E = émlzzg +mgl (23 — 1) = K (3.41)

Introducing (3.40) in (3.39), we obtain

24(gzs — lzs?) = % (3.42)

The ezpression (3.41) gives us

122 = K1 +2g (1 — 23)

with K1 = 2#—’{11 Combining the above and (3.42)

24(3gz3 + K3) = % (3.43)

with Ko = —(2g9 + K1). Taking the time derivative of (3.43), we obtain
(see (3.30)-(3.31))
25 (39 (25 — 23) + Kaz3) = 0 (3.44)
If z5 = 0, then 25 = 0 and from (3.40) we conclude that z4 = 0. If
z5 # 0, then (8.44) becomes
39 (23 — 23) + Kaz3 = 0 (3.45)

Differentiating (3.45), it follows

2524 (—12g23 - Kz) =0

The case when z3 = —1_2;2 implies that 6 is constant, which implies z5 =

0, and so z4 =0 (see (3.40)).

=0 and z5 = 0. From (3.39) it
]
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We therefore conclude that f = 0 in I'. From (3.38), it then follows
that z; = 0 in I'. It only remains to be proved that F = 0 when 2z; =0,
zzg=0and f=0.

From (3.31), we get

mlzszs —mlzs?zy = 0 (3.46)
mi?Zs —mglzy = 0 (3.47)
Introducing (3.47) into (3.46), we obtain
g 2 _
R 0 (3.48)
Thus, we have either
2! = %s (3.49)
or
2 = 0 (3.50)
Differentiating (3.49), we obtain
. _ g
22525 = — 7757 (3.51)

Let us first study (3.51) and (3.50) afterwards.
e Case 1. If z; # 0, (3.51) becomes
2% = ~ 24

Combining this equation with (3.47), we conclude that z4 = 0,
which implies (3.50).

o Case 2. If z5 = 0 then Z5 = 0, which together with (3.47) implies
that z4 = 0, which implies (3.50).

at z5 = 0. So far we have proved
0 and z5 = 0. Moreover, z3 = —1
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(which corresponds to @ = m (mod 27)) has been excluded by imposing
condition (3.27) (see also (3.12)). Therefore 27 = [0,0,1,0,0], which
implies that £ = 0. This contradicts the assumption F # 0 and thus
the only possible case is E = 0.

The above discussion can be summarized in the following main result
with the original variables (z, z, 6, 9).

Lemma 3.1 Consider the inverted pendulum system (3.4) and the con-
troller in (3.29) with strictly positive constants kg, ky, k; and ks satis-
fying inequality (3.26). Provided that the state initial conditions satisfy
inequalities (3.27) and (3.28), then the solution of the closed-loop system
converges to the invariant set M given by the homoclinic orbit (3.16)
with (z,z) = (0,0). Note that f does not necessarily converge to zero.
|

3.7 Simulation results

In order to observe the performance of the proposed control law based
on an energy approach of the system, we performed simulations on
MATLAB using SIMULINK.

We considered the real system parameters M = M +m = 1.2,
mi? = 0.0097 and P = ml = 0.04, and g = 9.804 ms~2 of the in-
verted pendulum at the University of Illinois at Urbana-Champaign.
Recall that the control law requires that initial conditions such that
(3.28) are satisfied. We chose the gains kg = 1, k, = 1, k; = 1072 and
ks = 1. These gains have been chosen to increase the convergence rate
in order to switch to a linear stabilizing controller in a reasonable time.
Note that these gains satisfy inequality (3.26).

The algorithm brings the inverted pendulum close to the homo-
clinic orbit but the inverted pendulum will remain swinging while get-
ting closer and closer to the origin. Once the system is close enough
to the origin, ie. (Jz|] < 0.1,|2] < 0.2,]8] < 0.3,]8] < 0.3), we
switch to the linear LQR controller f = —K[z & 6 6]T where
K=[44 23 74 11].

Figures 3.2 and 3.3 show the results for an initial position
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Simulations showed that the non-linear control law brings the system
to the homoclinic orbit (see the phase plot in Figure 3.3). Switching
to the linear controller occurs at time ¢ = 120 s. Note that before the
switching, the energy E goes to zero and that the Lyapunov function
V is decreasing and converges to zero.
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Figure 3.2: Simulation results

3.8 Experimental results

We performed experiments on the inverted pendulum setting at the
ampaign. The parameters of the
and the linear controller gains K
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Figure 3.3: Simulation results
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are the same as in the previous section.

For this experiment, we chose the gains kg = 1, k, = 1.15, k; = 20
and ks = 0.001, which satisfy inequality (3.26).

Figures 3.4 and 3.5 show the results for an initial position

z=0 z=0

=m+0.1 6=0.1

Real-time experiments showed that the non-linear control law brings
the system to the homoclinic orbit (see the phase plot in Figure 3.5).
Switching to the linear controller occurs at time ¢t = 27 s. Note that
the control input lies in an acceptable range.

3.9 Conclusions

We have presented a control strategy for the inverted pendulum that
brings the pendulum to a homoclinic orbit, while the cart displacement
converges to zero. Therefore, the state will enter the basin of attraction
of any locally convergent controller.

The control strategy is based on the total energy of the system,
using its passivity properties. A Lyapunov function is obtained using
the total energy of the system. The convergence analysis is carried out
using LaSalle’s invariance principle. The system non-linearities have
not been compensated before the control design, which has enabled us
to exploit the physical properties of the system in the stability analysis.

The control scheme has been tested in a real cart-pole system and
good performance has been obtained.

The proposed control strategy is applicable to a wider class of un-
deractuated mechanical systems as we will see in Chapters 4 to 7.
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Chapter 4

A convey-crane system

4.1 Introduction

Based on the results of control of the inverted pendulum on a cart pre-
sented in Chapter 3, we propose a control law of a convey-crane, which
transports a load suspended from a cart minimizing the oscillations of
the load. The technique has also been presented in [18].

The inverted pendulum on a cart has brought about many contribu-
tions, the objective being the stabilization of the unstable equilibrium
point as seen in Chapter 3. The problem of asymptotic stabilization
of the lower equilibrium point has not been thoroughly studied in the
literature. The control objective of a convey-crane presented in this
chapter is to move the load to the origin, keeping the oscillations of the
suspended mass as small as possible. The system dynamics correspond
exactly to the equations of the inverted pendulum on a cart, but now the
point of interest is the lower equilibrium point. The stability analysis
is carried out using Lyapunov techniques. The present approach takes
advantage of the passivity of the model. The non-linearities are not
canceled and the control law may be interpreted as adding a non-linear
damping to the system dynamics. The performance of the control law
is shown in simulations.

4.2 Model

Consider the convey-crane system as shown in Figure 4.1, where M is
the mass of the cart, m is the mass of the pendulum and the load of the
crane, ¢ the angle the pendulum makes with the vertical and [ the length
of the rod. We will assume, as in the case of the inverted pendulum,

43
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that the masses are concentrated at their geometrical centers. We will
assume that the rod has constant length ! and no mass.

@

1cos©

Figure 4.1: The convey-crane system

The equations may be obtained by standard Euler-Lagrange methods or
applying Newton’s second law. The system dynamics may be described
by

M(q)i+Clq,q)d +G(q) = (4.1)

where

3] o] Moz, ] e
C(q,q) = [ g mi s(i)n” ] (4.3)
Glg) = [ mg;)sine ] and 7= [ g ] (4.4)

The above model corresponds to the model used for the inverted pen-
: g 0 — 6 + 7 (see [59] or [46]). Notice that
nite, since the parameters M, m,|
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det[M (q)] = (M +m)mi®—(—mlcos6)?

= Mmi?2+m22sin?60 >0 (4.5)

A second well-known property is that the parameters of the model are
such that the matrix

0 —mls1n90] (4.6)

M(q) —20(9,9) = [ mlsinf 6 0

is skew-symmetric. This property is required to establish the passiv-
ity of the model. Recall [41] that for any skew-symmetric matrix A,
zT Az = 0.

Finally, the potential energy associated with the pendulum, may be
defined as P = mgl(1 — cos ). With this definition, P and G(q) are
related by

G(g) = g—{: - [ 0 ] (4.7)

mglsinf

4.3 Passivity of the system

The total energy of the system, i.e. the sum of the kinetic energy of the
two masses and the potential energy of the pendulum is given by

E = %QT M(q)¢ + P(q)

54T M(q)g +mgl (1 — cosb) (4.8)

Using (4.1)-(4.4) and (4.6)-(4.7), we may calculate the derivative of the
energy F as

E = ¢"M(q)i+ 3" M(9)i+ ¢"G(q)
= 7 (-Ca-G+r+iM(@i) +d"Glg)  (49)
= {"r=2df

Integrating the last relationship from zero to ¢, we get

(4.10)
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which proves the passivity of the system having f as input and & as out-
put. Note that when the input force is zero and restricting 6 € [0, 2x],

the system (4.1) has two subsets of equilibrium; (:v, z,0, 0) = (%,0,0,0)
is a set of stable equilibrium points and (z, z,0, 0) = (*,0,m,0) corre-
sponds to a set of unstable equilibrium points. The minimum energy

corresponds to the lower position of the pendulum and equals zero.
The control objective is to bring the state from the initial conditions

(z(O),a’c(O),O(O), 9'(0)) = (20,0,80,0) to the origin, i.e. change the sta-

ble equilibrium point (1:,:'6,0,9) = (0,0,0,0) into an asymptotically
stable equilibrium point around some neighborhood of the origin.

4.4 Damping oscillations control law
Notice from (4.8) that if £ =0 and E = 0, then

%ml%z =mgl(cosf —1) (4.11)

This is a homoclinic orbit (see Definition 2.10). In order to take advan-
tage of the passivity property of the system, let us propose the following
Lyapunov function candidate

. .k
V(g,9) = kpE(g,4) + 7’ (4.12)
where kg, k; are strictly positive constants. The Lyapunov function

candidate V' (g, q) is positive definite if we restrict 6 € [0,27). Differen-
tiating V (g, q) and using (4.9), we get

V = kgFE +kyzi

= kgif + kzzz (4.13)
= I (k:E f + kzm)
From (4.2), we get
_ 1 ml? mlcos@
M ()] = —s (4.14)

~ det(M(q)) | micos® M+m
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with det(M (g)) as in (4.5). From (4.1) and the above, we obtain

HEE 1 il B0

{_[mh?%z]_[mgﬂme]+[£]}MJQ

From the above, we get

1

rI— —
M + msin20

[—m sinf (l 62 + g cos 0) + f] (4.17)

and

. 4.18
ml cosOGz) +cos€f] (4.18)

For the sake of simplicity, we will consider M = m = [ = 1, then we
will propose the control law such that

(kg f + kgz) = —v2 (4.19)

for some y > 0, which leads to

V = —vi? (4.20)

The explicit control law defined by (4.19) is

f= _ki (kzz + v2) (4.21)
E

The control law (4.21) guarantees V = —vi2, which is negative semi-
definite, therefore the closed loop is stable [46].

alysis

we will prove the following
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Theorem 4.1 The closed-loop system given by equations (4.1) and
(4.21) is such that the origin is asymptotically stable for all points in
R* \{(0,0,,0)}. ]

Proof 4.1 From (4.20), the invariance setT isT : {(w,:i:,@,é) ¢ =0}.
Thus, z is constant in I'. Assume that in ', £ = a # 0. Then, from
(4.21), f = —,’:—;a # 0, which leads to a contradiction since a constant
force will eventually produce a displacement of the cart. Therefore, in
' z =0 and f = 0. Since the cart is at rest, the pendulum can be
either at rest or oscillating. However, an oscillatory movement of the
pendulum would ezert a force on the cart and produce a displacement.
Since ¢ =0 in I', we conclude that 0 =0 or @ = nmw in I'. This can also
be concluded from (4.17), which for x = 0 reduces to

sin @ (10.2 + g cos 0) =0 (4.22)
Note that the equation 6% = —9cosf has an equilibrium at 6 = +%
that is unrealistic, since f = 0 in I'. Therefore, the only possible

solution of (4.22) is @ = 0 or 0 = nm, n = 1,2,... We either have
convergence to (x,:t,O,é) = (0,0,0[27],0) for which E = 0 or to
(z,%,0,0) = (0,0, 7[27],0) for which E = 2mgl. The latter conver-
gence point can be avoided by constraining the initial conditions to the
region V(0) < 2kgmgl. [ ]

4.5 Simulation results

For comparison reasons, we obtained from (4.17) and (4.18) a linearized
model of the convey-crane around its lower equilibrium point and with
a force f = 0.

01 0 0 0
00 - 1

— M

=19 o 0 EARE: f (4.23)
o0 g o] |

We used full state feedback f = —kz on the linearized model with
k = [3 369 071 —0.87 ]. Simulations were performed using
SIMULINK, we considered M =1,m =1,/ =1and g = 9.8 m/s?, and

the initial conditions were (cc(O),:t(O),B(O),O(O)) — (=5,0,-7/4,0).
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The parameters of the control law (4.21) were kg = 1, k, = 3 and
v = 4.3. Figure 4.2 shows the position of the cart z and the angle 6
for the original and linearized models with their respective controllers.
Figure 4.3 shows the angle 8 and the position of the cart z, now for
the initial conditions (—5,0,0,0). In these two cases and for different
initial conditions, the proposed controller outperforms the linearized
controller.

Position of the cart with the original model Position of the cart with the linearized model

1 1

of o A

b T N ........ ........ b
S SR Y S O A
S O SO e
b ] O B O SO P
S 2 4 6 8 10 S 2 4 6 8 1
s Angle theta with the original model Angle with the linearized model

Figure 4.2: Cart position and angle 6 for an initial position

(_57()’ "%70)
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Position of the cart with the original model Position of the cart with the linearized model

1 1

of o

] ape o
Wl IR R O S O B
T S T
Y S R 7 YA S S
S 2 4 s 5 10 S 2 4 6 8 10
0 Angle theta with the original model 0 Angle with the linearized model

Figure 4.3: Cart position and angle 6 for an initial position (-5, 0,0,0)
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4.6 Concluding remarks

We have presented a control law for the convey-crane model, which is
similar to the inverted pendulum on a cart, considering the lower equi-
librium point as the control objective. We proved asymptotic stability
of the proposed control law using a Lyapunov function, which is based
on the energy of the system. The convergence analysis was completed
using LaSalle’s invariance theorem. Simulations show that the region
of attraction is practically the whole state space.




Chapter 5

The pendubot system

5.1 Introduction

The two-link underactuated robotic mechanism called the pendubot
is used for research in non-linear control and for education in various
concepts like non-linear dynamics, robotics and control system design.

This device is a two-link planar robot with an actuator at the shoul-
der (link 1) and no actuator at the elbow (link 2). The link 2 moves
freely around link 1 and the control objective is to bring the mechanism
to the unstable equilibrium points.

Similar mechanical systems are numerous: the single and double
inverted pendulum, the acrobot [11], the underactuated planar robot [1],
etc. Control strategies for the inverted pendulum have been proposed
in [4, 59, 86, 98].

Block [10] proposed a control strategy based on two control algo-
rithms to control the pendubot. For the swing up control, Spong and
Block [107] used partial feedback linearization techniques and for the
balancing and stabilizing controller, they used linearization about the
desired equilibrium point by Linear Quadratic Regulator (LQR) and
pole placement techniques. The upright position is reached quickly as
shown by an application. Nevertheless, they do not present a stability
analysis. The authors used concepts such as partial feedback lineariza-
tion, zero dynamics, and relative degree and discussed the use of the
pendubot for educational purposes. To our knowledge, there exists only
this solution in the literature to solve the swing up problem of the pen-
dubot.

The controller that we propose is not based on the standard tech-
niques of feedback linearization (or partial feedback linearization). We

53
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believe that our approach is the first for which a complete stability
analysis has been presented.

The stabilization algorithm proposed here is an adaptation of the
work of [24] and Chapter 3, which deals with the inverted pendulum.
We will consider the passivity properties of the pendubot and use an
energy-based approach to establish the proposed control law. The con-
trol algorithm as well as the convergence analysis are based on Lyapunov
theory.

This chapter is organized as follows. In Section 5.2, the model of the
pendubot system is presented. Section 5.3 gives the passivity proper-
ties of the system. In Section 5.4, the controllability of the linearized
system is studied. In Section 5.5, the stabilization of the system around
its homoclinic orbit using an energy approach is proposed. In Section
5.6, we present the stability analysis of the proposed control law. The
performance of the control law is shown in a simulation example and
in real-time experiments, in Sections 5.7 and 5.8. We conclude this
chapter with some final remarks in Section 5.9.

5.2 System dynamics

Consider the two-link underactuated planar robot, called the pendubot.
We will consider the standard assumption, i.e. no friction, etc..

Figure 5.1: The pendubot system
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my : Mass of link 1

mo : Mass of link 2

I :  Length of link 1

ls :  Length of link 2

l, : Distance to the center of mass of link 1

lc, : Distance to the center of mass of link 2

I,  : Moment of inertia of link 1 about its centroid
I, : Moment of inertia of link 2 about its centroid
g :  Acceleration due to gravity

g1 : Angle that link 1 makes with the horizontal
g2 : Angle that link 2 makes with link 1

71 : Torque applied on link 1

We have introduced the following five parameter equations

6, = mllgl + mQI% + I

0, = mglg2 + I

93 = mzlllCZ (51)
0y = mllcl + maly

05 = male,

For a control design that neglects friction, these five parameters are all
that are needed.

5.2.1 Equations of motion via Euler-Lagrange formula-
tion

We first present the kinetic and potential energies that are used to
compute the Lagrangian function. The kinetic energy of link 1 is

1 .
K, = 2 (I + mil2) 3
The kinetic energy of link 2 is
1 .
Ky, = 5 (Iz + malyl., cos gz + mglfz + mzlf) qf
.. 1 )
+ (I + malile, cos gz + mal?)) dide + 3 (I +mal?)) @

With the five parameters defined in (5.1), the total kinetic energy is

K = K+ K>
1 . | ..
K = 3 (01 + 02 + 203 cos q2) ¢ + 592113 + (02 + 03 cos g2) 4142
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The total potential energy is P = 64gsing; + 6s5g9sin(q; + g2). The
Lagrangian function is given by

L = K-P
1 ) 1 . ..
L = 5 (61 + 62 + 263 cos g2) q% + 592q§ + (62 + 63 cos ¢2) G142
—604gsing; — O5gsin (g1 + ¢2)

The corresponding equations of motion are derived using Lagrange’s

equations
d (0L . oL N
7 (5‘; (q,Q)) "% (g,9) =7 (5.2)

where ¢ = (q1, ...qn)T represents the generalized variables, one for each
degree of freedom of the system, 7 = (7, ..., Tn)T denotes forces that are
externally applied to the system. In our case, the generalized variables
are ¢, and qo, i.e. ¢ = (q1,q2)T and 7 = (71,0)T, where 7, is the force
applied on the first link. We therefore have

oL )
(—BE) = (61 + 62+ 203cosq2) ¢1 + (02 + 03 cos q2) G2

oL
(8_> = —04gcosq; — Os5gcos(q1 + q2)
q1
oL . .
(6_> = 02¢2 + (02 + 03 cosq2) 1 (5.3)
q2
oL o
%) —03sinqaq] — 03sin (g2) 412 — O59 cos (g1 + g2)

From Lagrange’s equations (5.3), we finally obtain the equations of
motion (5.4) and (5.5)

71 = (01 + 02+ 205cosq2) G + (02 + 03 cos g2) Go — 03 sin ga g2
—203 sin g2q142 + 049 cos q1 + O5g cos (q1 + g2) (5.4)
0 = 0242 + (62 + 03 cos ga) G1 + O3 sin g2¢?
+059 cos (q1 + g2) (5.5)

They can be rewritten in standard form (5.6)
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D(q)§+C(q,9)g+9g(q) =T (5.6)

@ [ 61 +062+203c0osq2 02+ 0O3cosq2
1= [ :l D(q) - [ 02 + 93 COS g2 92 (5'7)

[ —0ssin(g2) g2 —063sin(g2) g2 — O3sin(g2) 1
C(q1 q) - [ 03 Sin (q2) q-l 0 (58)

649 cos g1 + 059 cos (q1+92) ] [ m ]
_ d = 5.9
9(q) [ 059 cos (q1+92) e 0 )

Note that D(q) is symmetric. Moreover,

di1 =6, + 62+ 205cos gz
= mllgl + mzl% + Il + mglg2 + Iz + 2m211l62 COs g2
Z mllzl + mzlf + Il + Tn,zlz2 + Iz - 2m2l1102
> mllfl + I + I + my (ll — 162)2 >0

and

det(D(q)) = 0102 — 63 cos® g2
= (mil2 + L) (mal?, + I) + mali o + m31317 sin’q,
> 0

Therefore D(q) is positive definite for all g. From (5.8), it follows that

D(q) — 2C(q,q) = 3singz (241 + g2)

[ —03sin g2 (241 + ¢2) 0
(5.10)

ol Lel ziJLi.LI

An important property of skew-
used in establishing the passivity
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zT(D(q) — 2C(q,4))z =0 Vz (5.11)

The potential energy of the pendubot can be defined as P(q) =
0sgsing, + Osgsin(q1 + ¢g2). Note that P is related to g(q) as follows

_OP [ 849cosqi + 6059 cos (g1 + g2)

12
o(a) = 5, AR (5.12)

5.3 Passivity of the pendubot

The total energy of the pendubot is given by

E =1¢"D(q)¢ + P(q)
(5.13)

= 247 D(q)d + 01gsing + O5gsin (g1 + g2)

Therefore, from (5.6), (5.7), (5.9) and (5.11), we obtain

E =¢"D(q)j+ 3d"D(q)q + qTg(q)
=47 (-C(g,4)d — 9(q) + 7) + 34" D(9)g + ¢ 9(q) (5.14)
= "1 =dim

Integrating both sides of the above equation, we obtain

/ Ciimdt = (1) — B(0) (5.15)
0

Therefore, the system having 71 as input and ¢; as output is pas-
sive. Note that for ;1 = 0, the system (5.6) has four equilibrium
points; (q1,41,92,42) = (5,0,0,0) and (q1,41,92,42) = (-%,0,m,0)
are two unstable equilibrium positions (respectively, top position and
mid position). We wish to reach the top position. (q1,41,92,42) =
(5,0,m,0) is an unstable equilibrium position that we want to avoid,
and_(g1,6G1,92,42).=(=5,0,0,0) is the stable equilibrium position we
want to avoid too. The total energy E(q,q) is different for each of the
four equilibrium positions



5.4. LINEARIZATION OF THE SYSTEM 59

E (%,0,0,0) = Eiop = (04 +65)g  Top positions for both links
E(-2,0,0,0) =E;, =(—-04—65)g Low positions for both links
E(-%,0,m,0) = Emnia=(05—04)g Mid position: low for link 1
and up for link 2
E(%,0,7,0) =E;, = (04 —0s5)g Position: up for link 1

. and low for link 2
(5.16)

The control objective is to stabilize the system around its top unstable
equilibrium position.

5.4 Linearization of the system

In the same manner as for the inverted pendulum (3.4), we will linearize
the pendubot’s non-linear equations of motion (5.4) and (5.5) about the
top equilibrium position. Let us first rewrite (5.4) and (5.5) as follows

G = ——_——0102_9§ P [9293 sings (41 + g2)° + 02 cos g2 sin (g2) ¢7

—0904g cos q1 + 03059 cos g2 cos (q1 + g2) + 0271]
(5.17)

. . . . \2
2 = ——————0192_(% ol B [—93(92 + 03 cos g2) sings (41 + ¢2)

— (61 + 03 cos g2)03 sin (g2) G? + (02 + 63 cos g2)(0ag cos g1 — 1)
—(61 + 65 cos g2)059 cos (g1 + g2)]
(5.18)

Consider the system state Y = [q1, ¢1, g2, g2]. Differentiating equations
(5.17) and (5.18) with respect to the states and evaluating them at the
top unstable equilibrium position leads to the following linear system

@ 0 10 0 @
. (6204—6365)g 6365 i
i q1 — 0192—9% 0 51—02——_-%3 0 q1
dt | ¢ 0 0 0 1| | ¢
I 059(61+63)—649(02+63) 059(61+63 J
1 610,62 0 5 5-z O 9
0
[ 5
ol e AY + B

—-02—9%
6,02 —-03
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We then have

0 (7]
. 816,02
_ | 8.-62 _ 0
B - 0 3 AB - —02—-6
—0,—8 016203
6162—63 0
_ 0 -
g(0492+9502)
A2B — 016263
0
_ 9(8463+626483+656103+6563)
| 0192-0§ |
[ 9(0492+0592) b
010,67
3, 0
A°B = _9(049§+320403+959193+959§)
816,02
b 0 -

and det (B|AB|A%’B|A®B) = ﬁ%%?. Thus, the linearized system is
3

controllable. Therefore, a full state feedback controller ; = —KTY
with an appropriate gain vector K is able to successfully stabilize the
system to its top unstable equilibrium position.

5.5 Control law for the top position

5.5.1 The homoclinic orbit

Let us first note that in view of (5.13), (5.7), and (5.8), if the following
conditions are satisfied

) ¢1=0
c2) E(g,q9)=(04+065)g

gsin (g1 + q2) = 049 + 059  (5.19)
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From the above, it follows that if g; # 5 then ¢3 > 0. If in addition to
conditions ¢;) and cz) we also have condition c3) q1 = %, then (5.19)
gives

%9243 =059 (1 — cos g2) (5-20)
The above equation defines a very particular trajectory that corresponds
to a homoclinic orbit. This means that the link 2 angular position moves
clockwise or counter-clockwise until it reaches the equilibrium point
(g2,92) = (0,0). Thus, our objective can be reached if the system can
be brought to the orbit (5.20) for ¢; = 0 and ¢; = 7. Bringing the sys-
tem to this homoclinic orbit solves the “swing up” problem. In order to
balance the pendubot at the top equilibrium configuration (7/2,0,0,0),
the control must eventually be switched to a controller that guarantees
(local) asymptotic stability of this equilibrium. Such a balancing con-
troller can be designed using several methods, for example LQR, which
in fact provides local exponential stability of the top equilibrium. By
guaranteeing convergence to the above homoclinic orbit, we guarantee
that the trajectory will eventually enter the basin of attraction of any
balancing controller.

5.5.2 Stabilization around the homoclinic orbit

The passivity property of the system suggests us to use the total energy
E in (5.13) in the controller design. Let us consider ¢; = (g1 — %)and
E = (E- FEtop). We wish to bring to zero ¢, ¢; and E. We propose
the following Lyapunov function candidate

. kg -, . kp . kp
V(9,4) = 5 B(0,d)" + 6f + a7 (5.21)
where kg, kp and kp are strictly positive constants to be defined later.
Note that V (g, ¢) is a positive semi-definite function. Differentiating V'
and using (5.14), we obtain

V= kgEE +kpigy + kpdidy
=kgEqm +kpqiGi + kpqida (5.22)
= q1(kpET + kpd1 + kpd1)

Let us now compute ¢; from (5.6). The inverse of D(q) can be obtained
from (5.7) and (5.10) and is given by
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D1(q) = [det(D(q))] " [ 02 —0 — 05 cos g2 ]

—02 —03cosqa 601 + 0 + 203 cos qo
(5.23)

with
det(D(q)) = 6162 — 63 cos g

Therefore, we have

2] = e (g e )

g2 — (62 + 65 cosg2) T

~D(q) (C(q, q) [ g; ] +9(q))

¢1 can thus be written as

q = Wém [927'1 + 0203 sin g3 (41 + 2)°
0§ cos ¢z sin (g2) (jf — 62049 cos g1 + 03059 cos g2 cos (g1 + qz)]

To reduce the expressions, we will consider
F(q1,41,92,d2) = 0203sings (41 + g2)° + 602 cos gz sin (g2) ¢
—6204g cos q1 + 03059 cos g2 cos (g1 + g2)

thus

1
. = 0 F . . .24
a1 610, — 62 cos? go (0271 + F (g1, 41, 92, 42)] (5.24)

Introducing the above in (5.22), one has

: . -t kD02 kDF (41,41,42,d2) -
V= kgFE k
a [Tl ( BE+ 6,62 — 62 cos? Q2) + 6162 — 62 cos? g +hPa

We propose a control law such that

~ kp6s kpF (q1,41,92,42)
9192 - 0§ COS2 q2

+kpq1i = —q1
(5.25)
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which will lead to

V=-—¢ (5.26)

The control law in (5.25) will have no singularities, provided that

- kpbs
kgFE 2
( E + 0102 - 9% COS2 q2) # O (5 7)

Note from (5.13) that E > —2(64 + 05)g. Thus, (5.27) always holds if
the following inequality is satisfied

kpB2

maxg, (det(D(q))) ~ 2kE(0s+5)9 (5.28)

This gives the following lower bound for ’,Z—D
E

k
=D 5 20, (64 + 05)g (5.29)
ke
Note that when using the control law (5.25), the pendulum can get
stuck at any equilibrium point in (5.16). In order to avoid any singular

points other than Ej,,, we require

‘Eﬂi < min(lEtop - Emidl ) 'Etop - Ell! ) |Etop - Elzl) (5-30)
= min(2049,2059) = ¢ (5.31)

Since V is a non-increasing function (see (5.26)), (5.31) will hold if the
initial conditions are such that

c2

V(0) < ke (5.32)

The above defines the region of attraction as will be shown in the next
section.
Finally, with this condition, the control law can be written as

(5.33)

_ —kpF (q1,41,92,42) — (61602 — 63 cos® g2) (41 + kpds)
’ ’ ) kEE + kp0y

bwing theorem.
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Theorem 5.1 Consider the pendubot system (5.6) and the Lyapunov
function candidate (5.21), with strictly positive constants kg, kp and
kp satisfying (5.29). Provided that the state initial conditions (5.31)
and (3.28) are satisfied, then the solution of the closed-loop system
with the control law (5.33) converges to the invariant set M given
by the homoclinic orbit (5.20) with (q1,41) = (5,0) and the interval
(91,41,92,42) = (5 — €,0,¢6,0), where |e] < €* and €* is arbitrarily
small. |

The proof will be developed in the following section in which the sta-
bility will be analyzed.

5.6 Stability analysis

The stability analysis will be based on LaSalle ‘s invariance theorem (see
for instance [46], page 117). In order to apply LaSalle’s theorem, we
are required to define a compact (closed and bounded) set Q with the
property that every solution of system (5.6) that starts in Q remains in
Q for all future time. Since V (g, ¢) in (5.21) is a non-increasing function,
(see (5.26)), then ¢1, g1, and ¢z are bounded. Since cos g3, sin g, cos gy,
sinqy, cos (g1 + ¢2), sin (g1 + ¢2) are bounded functions, we can define
the state z of the closed-loop system as being composed of ¢, singqy,
sin (g1 + g2), 41, cosqz, singy and ¢2. Therefore, the solution of the
closed-loop system z = F(z) remains inside a compact set Q that is
defined by the initial state values. Let I' be the set of all points in Q2
such that V(z) = 0. Let M be the largest invariant set in I'. LaSalle’s
theorem ensures that every solution starting in 2 approaches M as
t — oo. Let us now compute the largest invariant set M in T

In the set T' (see (5.26)), V = 0 and ¢; = 0, which implies that ¢;
and V are constant. From (5.21), it follows that E is also constant.
Comparing (5.24) and (5.33), it follows that the control law has been
chosen such that

—41 = kpEm + kpi1 + kpdy (5.34)

From the above equation, we conclude that E7i is constant in I'. Since
E is also constant, then E is constant and we either have a) E=0or

b) E # 0. On the other hand, if E = 0 then from (5.34) § = 0, which
means that the three conditions ¢;, ¢ and c3 are satisfied and therefore
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the trajectory belongs to the homoclinic orbit (5.20). If E # 0 and
since E'r; is constant, then 7y is also constant.

We will give below a mathematical proof of the fact that the solutions
converge to the invariant set M when ¢; = 0, g1 = 0, ¢1 is constant, E
is constant and 7; is constant.

Proof 5.1 With ¢ = 0, g1 = 0, g1 constant, E constant and 1, con-
stant, the system (5.6) becomes

71 = (62 + 03cosqz)dz — 03sin(g2) q% + 049 cos q1
059 cos (g1 + g2) (5.35)
0 = 062Gz +0sgcos(q1+q2) (5.36)

Introducing (5.36) into (5.35), we obtain

—030s59

o, cos (q1 + ¢2) cos (g2) — 03 sin (g2) tj% +60s4gcosqr =11 (5.37)

Moreover, the energy E in (5.13) is constant and is given by
E = %0243 + 64gsinq; + 05gsin(q; + ¢2) = Ep (5.38)
Combining the above and (5.37) yields
—030s59 205

n o= o, cos (q1 + g2) cos (g2) — —0—2—E0 sin (g2)

205 . . .
+0—23 sin (g2) (sgsingi + Os5gsin(q1 + g2))

+04g cos q1 (5.39)

Differentiating (5.39), we obtain

303059 [

p
B 203 E
0o

0 = sin(g1 + g2) cos(g2)g2 + cos(q1 + g2) sin(gz2)qe]

.20 . .
0 cos(g2)g2 + 9—23 cos(q2)q2(04g singq;) (5.40)

# 0 or the case b) g2 = 0. Let us
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o Case a: If g2 # 0, (5.40) becomes

303059 . 205E,
0 = 3759 sin(q; + 2g) — =22 cos(gz)
62 62
203 .
+ 5, cos(gz)(0ag sing;) (5.41)
Taking the time derivative of the above (5.41), gives us
6650 . 203E, . .
0 = 229 cos(gy +2q2)da + o sin(g2)da
02 02
205 . . .
- 0—; sin(qz)q2(04g singy) (5.42)

Since g2 # 0, we divide the above by ¢2 and differentiating the
equation again yields

1205059 . . 203E, :
0 = _-2%9 sin(qy + 2¢2)d2 + 370 cos(g2)g2
02 62
26 ) .
- 0—23 cos(g2)g2(0sg sinqy) (5.43)

Dividing (5.43) by ¢o yields

12656 203 E
0 g sin(q1 + 2¢2) + ——2 cos(gz)
65 0,
203 .
~ 0, cos(g2)(0agsing) (5.44)
Combining (5.41) and (5.44), it follows that
sin(g; +2¢2) =0 (5.45)

Therefore, q1+2q2 is constant. Since gy is constant, then qo is also
constant and ¢o = 0. This contradicts the premise, i.e. ¢y # 0.
This particular case b) is not possible. The only case is finally
g2 = 0.

e Case b: If go = 0 then g2 = 0 and g is constant. From (5.36),
we have cos(q1 + g2) = 0 and from (5.85), we then have

O4gcosqy =71 (5.46)

(5.47)
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Since cos(q1 + g2) = 0, then sin(qy + g2) = £1 and the energy E
is given by

o 94g(Sin q1 — 1) 'Lf sin(q1 + q2) =1
E= : P 5.48
{ 049(sing; — 1) — 2059 if sin(g1 +q2) = —1 (5.48)

Introducing the above in (5.47) and using (5.46), we obtain if
sin(q1 + ¢g2) = 1
kg03g?
E_49(1 —sing;)cosq1 = ¢1 (5.49)
kp
and if sin(q1 + g2) = —1

kgb4g
kp

(649(1 — singy) + 205g) cos q1 = Gy (5.50)

In both cases, we can always choose some particular constants
kg and kp, such that the only solution of the above equations
(5.49) and (5.50) is q = 5. Looking at both graphics of the above
equations (5.49) and (5.50), it can be easily seen that if % is not

too big (’,:—I’f < 25), the only solution is q = 5. We finally get
another constraint on the coefficients.

Provided that the appropriate constraint on % is satisfied, we ensure

that g1 = 5. Therefore, since cos(q1 + g2) = 0, it follows that q2 =
O[r]. Furthermore, in view of the constraints imposed on the initial
conditions, the position when g3 = m is excluded. Therefore g2 = 0 and
finally E = 0. This contradicts the assumption E # 0 and thus the only

possible case is E=0. |

Finally, the largest invariant set M is given by the homoclinic or-
bit (5.20) with (g1,41) = (5,0) and the interval (q1,q1,92,42) =
(5 — €,0,6,0), where |e] < ¢* and €* is arbitrarily small. Provided
that the state initial conditions satisfy (5.31) and (5.32), and kp > 0
is sufficiently small, then all the solutions converge to the invariant set
M. This ends the proof of Theorem 5.1.

5.7 Simulation results

In order to observe the performance of the proposed control law based
on passivity, we performed simulations on MATLAB using SIMULINK.
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We considered the system taking parameters 6;;<;<5 of a real pen-
dubot from the University of Illinois, i.e. 6; = 0.034, 6, = 0.0125,
03 = 0.01, 64 = 0.215 and 65 = 0.073. We chose the gains kp = 1,
kp =1 and kg = 5, to increase the convergence rate in order to switch
to a linear stabilizing controller in a reasonable time.

Our algorithm allows us to bring the pendubot close to the top po-
sition, but the second link will remain swinging while getting closer
and closer to the top position. Once the system is close enough to the
top position, ie. (jz| < 0.2,|¢] < 0.2,]6] < 0.3,]6] < 0.2), we have
switched to a linear LQR controller ;1 = —K[q1 ¢1 g2 ¢2]7 where
K =[16.46 3.13 16.24 2.07].

Figures 5.2 and 5.3 show the results for an initial position

Q1 = 0 q2 = 0.4
g1 =0.1 g =0.1

Simulations showed that our non-linear control law brings the state of
the system to the homoclinic orbit (see the phase plot in Figure 5.3).
The first link q; converges to 7. E goes to zero, i.e. the energy F
goes to the energy at the top position Fy,. Note that the control
law 71 is different from zero. Switching to the linear controller occurs
approximately at time ¢t = 160 s. Then, the system stops at its unstable

top position and the control law is going to zero.

5.8 Experimental results

In addition to real-time experiments on the inverted pendulum, we per-
formed experiments on a pendubot setting at the University of Illinois
at Urbana-Champaign. The parameters of the model used for the con-
troller design and the linear controller gains K are the same as in the
previous section. For this experiment, we chose the gains kp = 10,
kp =1 and kg = 32.

Figure 5.4 shows the results for an initial position

™

G =—3 +e€ g =¢€
ql =€ q'2 =€
where ¢ is small.

Real-time experiments showed that the non-linear control law brings
the system to the homoclinic orbit (see the phase plot in Figure 5.4).
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Figure 5.4: Experimental results

Indeed, in Figure 5.4, the plotting of go shows that at time ¢t = 10 s,
the second link is swinging while getting closer and closer to the top
position. Once the system is close enough to this point, switching to the
linear controller occurs at time ¢t = 15 s. Note that the initial conditions
and condition (5.29) lie slightly outside the domain of attraction. This
proves that the domain of attraction is conservative.

5.9 Conclusions

y for the pendubot that brings the
Hp position or to a homoclinic orbit
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that will eventually enter the basin of attraction of any locally conver-
gent controller. The control strategy is based on an energy approach
and the passivity properties of the pendubot. A Lyapunov function is
obtained using the total energy of the system. The analysis is carried
out using LaSalle’s theorem.

It has been proved that the first link converges to the upright position
while the second oscillates and converges to the homoclinic orbit. This
has also been observed in simulations and tested in a real pendubot.

In order to compare our controller with the one proposed by [107],
we can remark that in our approach the control input amplitude does
not need to be very large since at every cycle (of the second link) we
are only required to slightly increase the energy. In other words, we do
not need high gain controllers.




Chapter 6

The Furuta pendulum

6.1 Introduction

The inverted pendulum is a very popular experiment used for educa-
tional purposes in modern control theory and this system can appear
with different constructions. As we have seen in Chapter 3, the struc-
ture of the conventional inverted pendulum is the rail-cart type, which
consists of a cart running on a rail and a pendulum attached to the
cart. The inverted pendulum of this type has the movement limitation
of its cart as a restriction of the control system. On the other hand, the
Furuta pendulum has a different structure. It has a direct-drive motor
as its actuator source and its pendulum attached to the rotating shaft
of the motor. This inverted pendulum on the rotating arm was first
developed by K. Furuta at Tokyo Institute of Technology. The product
of the experiment was called the TITech pendulum (see [30, 43, 123]).

Since the angular acceleration of the pole cannot be controlled di-
rectly, the Furuta pendulum is an underactuated mechanical system.
Therefore, the techniques developed for fully actuated mechanical robot
manipulators cannot be used to control the Furuta pendulum.

In 1992, Furuta et al. [30] proposed a robust swing-up control using
a subspace projected from the whole state space. Their controller uses
a bang-bang pseudo-state feedback control method. In 1995, Yamakita
et al. [123] considered different methods to swing up a double pendu-
lum. One is based on an energy approach and another one is based on
a robust control method. In 1996, Iwashiro et al. [43] considered a golf
shot with a rotational (Furuta) pendulum using control methods based
on an energy approach. Olfati-Saber [77] proposed in 1999 semi-global
stabilization for the rotational inverted (or Furuta) pendulum using
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fixed point controllers as for the cart-pole system (see the introduction
in Chapter 3). Then, in 2000, he introduced new cascade normal forms
_for underactuated mechanical systems in [78]. The main benefit of this
transformation was to reduce the overall system to control a lower or-
der non-linear subsystem in the normal form. He illustrated his result
with the example of the rotational pendulum. Contrary to the tech-
nique proposed here, the magnitude of the control input in his scheme
increases as the initial state is far from the origin.

The stabilization algorithm proposed here is again an adaptation of
the technique presented in the previous chapters and is also developed in
[19]. We will consider the passivity properties of the Furuta pendulum
and use an energy-based approach to establish the proposed control
law. The control algorithm’s convergence analysis is based on Lyapunov
theory.

In Section 6.2, we present the model of the Furuta pendulum ob-
tained using Euler-Lagrange equations. We also establish its passivity
properties. The control law is developed in Section 6.4 and the stability
analysis of the closed-loop system is given in Section 6.5. Simulations
are presented in Section 6.6 and conclusions are finally given in Section
6.7.

6.2 Modeling of the system

The Furuta pendulum is different to the conventional cart-pole inverted
pendulum. The Furuta pendulum requires less space and has fewer
unmodelled dynamics owing to a power transmission mechanism, since
the shaft around which the pendulum is rotated is directly attached to
the motor shaft. The coordinate system and notations are described in
Figure 6.1. We will assume that the friction is negligible.

Iy : Inertia of the arm

Ly : Total length of the arm

my; : Mass of the pendulum

I :  Distance to the center of gravity of the pendulum
J1  : Inertia of the pendulum around its center of gravity
0. Rotational angle of the arm

6 : Rotational angle of the pendulum

T : Input torque applied on the arm
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Figure 6.1: The Furuta pendulum system

6.2.1 Energy of the system

The total energy of the system is the sum of the kinetic energy K and
the potential energy P of the arm and the pendulum.

The arm

The kinetic energy of the arm is given by
1. .
Ko = -2—10002 (6.1)

Its potential energy is null, since no gravitational forces act on the
horizontal arm.

The pendulum

The kinetic energy of the pendulum is given by

Ki = 3216, + b [{£(Losino + b sin6y cos b))’
+ {%(Lo cos By — Iy sin6; sineo)}2 + {%(ll cos 01)}2]
(6.2)

where the first term corresponds to the kinetic energy due to the angular

i e pe while the last three terms are due to the
y and the vertical velocity of the
imple computations, K; reduces to
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-2 - 2 - 2
Ky = %Jlol + %mlL%go + %m]_lfe]_ (6 3)
+%mll% sin? 6160 + mqLgly cos 61606,
Its potential energy is given by
P1 = mlgh (COS 91 — 1) (64)

6.2.2 Euler-Lagrange dynamic equations

The equations of motion can be obtained using an Euler-Lagrange for-

mulation
d (0L oL
i (5) =" (65)

where L = K — P, K = Ko + K; and P = P;. We have

= [I() + ml(Lg + l% sin? 91)] é() + mqly Ly cos 0161

)
() = ©
)

L . .
(3_ = myliLgcos,0y + [J1 + mllﬂ 6,
00,
oL 2 . - 2 . s A .
—871 = m111 sin 01 COoSs 010() — mlllLo sin 019100 + mlgll sin 91

and thus, the system is given by

T = [IO + ml(Lg + 12 sin? 01)] 6o + mqly Lo cos 016;
+m1l% sin(201)9091 — mqlyLgsin 010.12 (66)
0 = myliLocos6iby + [Ji +mil?] 6,

—mllf sin 0, cos 01902 — migly sin 6 (6.7)

In compact form, the system can be written as
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_ | 6 [ Iy +mq(LE +13sin26;) mylyLocos 6,
= [ 61 ] Dla) = [ myly Lo cos 6, Ji +ml} (6.9)

C(q q) _ %mll% sin(201)0'1' —m111L0 sin 010.1 + %mllf Sin(291)é0
’ —%mllf sin(201)90 0
(6.10)

9(q) = [ —my 9101 siné, ] and F= [ g ] (6.11)

Note that D(q) is symmetric and also

din, = Ip+ ml(Lg + l% sin® 01) (612)
> Ip+mLE>0 (6.13)
and
det(D(q)) = (Ip + m1 (L3 + I?sin® 6,))(J1 + m1l?) — m2I2L2 cos? 6,
= (I + myl?sin® 0,)(Jy + my2) + Jym, L2
+m2l2 L2 sin? 6; > 0 (6.14)

Therefore, D(q) is positive definite for all g. From (6.9) and (6.10) it
follows that

D(q) — 2C(q,4) = myly(ly sin(261 )8y — L sin 616;) [ (1) “01 ] (6.15)
which is a skew-symmetric matrix. This constitutes an important prop-

erty, which will be used in establishing the passivity property of the
Furuta pendulum

2T(D(q) — 2C(q,4))z =0 Vz (6.16)

The potential energy of the system is defined as P = mgly(cos 6; — 1).
Note that P is related to g(q) as follows

] (6.17)
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6.2.3 Passivity properties of the Furuta pendulum

The total energy of the system is given by

E =K(q,9)+ P(q)
(6.18)
= 247 D(q)d + mygly(cos 61 — 1)

Therefore, from (6.8)-(6.11), (6.15)-(6.17), we obtain

E =¢"D(q)i+ 2d"D(9)d + dTg(q)
=¢7(-C(q,9)d — 9(q) + F) + 1¢"D(q)g + ¢Tg(q)  (6.19)
= qTF - éo‘l’

Integrating both sides of the above equation, we obtain

/ t fordt = E(t) — E(0) > —2mqgl; — E(0) (6.20)
0

Therefore, the system having 7 as input and 0y as output is passive.
Note that for 7 = 0 and 6y € [0, 27|, the system (6.8) has a subset of
two equilibrium set of points; (90,90,91,91) = (%,0,0,0) is an unsta-
ble equilibrium set of points and (6g, 8o, 61,6;) = (*,0,7,0) is a stable
equilibrium set of points. The total energy E(q, ) is equal to 0 for the
unstable equilibrium set of points and to —2m;gl; for the stable equi-
librium set of points. The control objective is to stabilize the system
around its unstable equilibrium point (6, 6y, 81,61) = (0,0,0,0), i.e. to
bring the pendulum to its upper position and the arm angle to zero
simultaneously.

6.3 Controllability of the linearized model

When the pendulum is in a neighborhood of its top unstable equilib-
rium position, a linear controller can stabilize the pendulum quite ade-
quately. In order to implement a balancing linear controller, the general
non-linear differential equations (6.6) and (6.7) are linearized about the
top equilibrium position. Provided that the linearized system is con-
trollable, we can design a linear controller. Let us therefore compute



6.3. CONTROLLABILITY OF THE LINEARIZED MODEL 79

the rank of the controllability matrix. The general non-linear equations
can be rewritten as follows

. 1 o ) 5 . .
b = 5 ( 50 [(J1 +mal2)r — (Jp + mal?)my 12 sin(26; )66,
— §m111L0 cos 0, sm(291)90 + (Jl + mlll )m111L0 sin 0101
—m213 Log cos 0; sin 61 ] (6.21)
9, — 1 _ 21272 - 2
0, = m [ (malyLo cos 61)7 — m7liL§ sin 64 cos 616

+m1l1 sm(291)60 [mlllLo cos 0101 + (I() + mlL + l% sin? 01)00]

+(I0 + mng + l% sin2 01)m111g sin 01] (6.22)

Linearizing the non-linear equations about the top unstable equilibrium
point, we obtain

0

1 0
0.0 0 —m%l%Log 0 0.0
d | 6o - To(Fimil3) +Jrmi L2 o
dt | 61 00 1 0,
0.1 0 (Io+m1Lg)mlllg 0 9.1

Io(J1+mllf)+J1m1L%

0
0
0
0
l J1+m1l2

IQ(J1+m112)+J1m1L r=AX + Bt

——m1l1L0
IQ(J1+mll2)+J1m1L

We then have

O J1+m11f

J1+m1£i Io(J1+mllf)+J1m1L3
B = Io(J1+m1l3)+J1mi L2 AB = 0

0 ) —myliLg ’
—mil Lo Io(J1+mllf)+J1m1Lg

Io(J1+mll%)+J1m1Lg 0

0 l3L(2)g

m?l?ng (Io(J1+m1FO)+J1m1L )2

(Io(J1+m1l})+Jimi L3)? A3B =

212Log(lo+m1L0)
(IO(JI +m1l2)+J1m1L )2
0
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9 3 _ mAAL2g?
and det (B|AB|A B|A B) = (Io(J1+mlll%)£J1m1Lg)4

The linearized system is controllable. Therefore, a full state feedback
f = —KTX with an appropriate gain vector K is able to successfully
stabilize the system in a neighborhood of its unstable equilibrium point.

6.4 Stabilization algorithm

Let us first note that in view of (6.18), (6.9) and (6.10), if 6y = 0 and
E(q,q) =0 then

%(Jl + mll%)()% = mlgll(l — COS 01) (6.23)
The above equation defines a particular trajectory that corresponds to a
homoclinic orbit. Note that 91 = 0 only when 6; = 0. This means that
the pendulum angular position moves clockwise or counter-clockwise
until it reaches the equilibrium point (61,6;) = (0,0). Thus, our objec-
tive can be reached if the system can be brought to the orbit (6.23) for
6o =0, o = 0 and E = 0. Bringing the system to this homoclinic orbit
solves the problem of “swinging up” the pendulum. In order to balance
the pendulum at the upper equilibrium position, the control must even-
tually be switched to a controller that guarantees (local) asymptotic
stability of this equilibrium. By guaranteeing convergence to the above
homoc]jnic orbit, we guarantee that the trajectory will enter the basin
of attraction of any (local) balancing controller. We do not consider
here the design of the balancing controller in this chapter.

The passivity property of the system suggests us to use the total
energy E in (6.18) in the controller design. Since we wish to bring to
zero 0y, 0y and E, we propose the following Lyapunov function candidate

koo K
505 + o2 (6.24)

. k )
V(g,d) = -2 E(g,9)* + 5

2

where kg, ko.and kg are strictly positive constants to be defined later.
Note that V (g, ¢) is a positive semi-definite function. Differentiating V'
and using (6.19), we obtain
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V  =kgEE + k0080 + keBobo
= kEEéoT + kwéoéo + koeoéo (6.25)
= éo(kEET + k‘wéo + kgbo)

Let us now compute 6 from (6.8). The inverse of D(g) can be obtained
from (6.9) and (6.14) and is given by

_ 1 Ji + myl? —maliLgcos @
Dl(q): [ 1 14 14140 1 J

[det(D(q))] | —maliLocos6y Ip+ my(L3 + I2sin?6;)
(6.26)

with

det(D(q)) = (I() + mll% SiIl2 01)(J1 + mllf) + JlmlL% + m%l%Lg sin? 61

Therefore, from (6.8)-(6.11), we have

[ bo ] g ( (1 + mul)r )
61 ]  [det(D(q)] \ —(maliLocosbr)r
-D7(q) <C(q, q) [ g‘l’ ] +g(q)) (6.27)

éo can thus be written as

9 = —1_ 2 _ 2 9 . ..
b = det(D(q)) [(J1+m1l1)7- (J1 + mql7)m, 1§ sin(26,)6006,

1 . .
——z-m%l:fLo COoS 01 sin(201)902 + (Jl + mll%)mlllLO sin 91012
—m212 Lyg cos 0 sin 61] (6.28)

Defining

L1 .
12)my12 sin(261)0,6; — Em%li”Lo cos 01 sin(2(91)l902

1912 - m%lrfLog cos 61 sin 01] (6.29)
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we get

1

b = dt(D() [(J1 + mil})T + F (q,9)] (6.30)

Introducing the above in (6.25), one has

w(J1 +m1lf)) k.F (q,q)

L k
V="b [ (’“EE T " 4et(D(g)) det(D(q))”“"”"] (6.31)

We propose a control law such that

T(’“EE“L aet(0(0) ) T det(D(g))

which will lead to

V = —ks02 (6.33)

Note that other functions f(6) such that 6o f(6y) > 0 are also possible,
in the right hand side of (6.32).
The control law in (6.32) will have no singularities, provided that

(6.34)

2
(kEE+ ko (N1 +mlll)) £0

det(D(q))

Note from (6.18) that E > —2mjgl;. Thus, (6.34) always holds if the
following inequality is satisfied

ko(J1 + 'm1l%)
maxg, (det(D(q)))

> kg(2migly) (6.35)

This gives the following lower bound for %;1—

ky

kg

> 2magly (I + myl? + my L2) (6.36)

ntro (6.32), the pendulum can still get
- (lo e e i point, (60, 6o, 61, 61) = (0,0, 7,0)
& =
ol LE N ‘U i_l.i>
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for which 7 = 0. In order to avoid this singular point, which occurs when
E = —2mygl; (see (6.18)), it suffices that the following holds

!Ei < 2m1911 (637)

Since V is a non-increasing function (see (6.33)), (6.37) will hold if the
initial conditions are such that

V(0) < 2kgm?g?i? (6.38)

The above defines the region of attraction (see Chapter 3 or [59] for
more details).
Finally, the control law can be written as

~kuF(g,4) - det(D(q)) (kso + koo )
T T de(D(@))kEE + ku(d + mill) (6.39)

with kg and k, satisfying (6.36).

6.5 Stability analysis

The stability analysis will be based on LaSalle “s invariance theorem (see
for instance [46], page 117). In order to apply LaSalle s theorem, we
are required to define a compact (closed and bounded) set Q2 with the
property that every solution of system (6.8) that starts in 2 remains in
Q for all future time. Since V' (g, ¢) in (6.24) is a non-increasing function,
(see (6.33)), then 6, 90, and 6; are bounded. Since cos 0y, sinfy, cos b,
and sin #; are bounded functions, we can define a state z of the closed-
loop system composed of 6, 90, cosfy, sinf; and 6. Therefore, the
solution of the closed-loop system z = F(z) remains inside a compact
set {) that is defined by the initial state values. Let I" be the set of all
points in  such that V(z) = 0. Let M be the largest invariant set in T
LaSalle s theorem ensures that every solution starting in {2 approaches
M as t — oo. Let us now compute the largest invariant set M in I'.

In the set T' (see (6.33)), V = 0 and 6y = 0, which implies that 6,
and V are constant. From (6.24), it follows that F is also constant.
From (6.25) and (6.31)-(6.32), it follows that the control law has been
chosen such that
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—ksbo = kg ET + ko) + kebo (6.40)

From the above equation, we conclude that E7 is constant in I'. Since
E is also constant, we either have a) E =0 or b) E # 0.

e Case a: If F = 0 then, from (6.40), 6y = 0. Note that 7 in (6.39)
is bounded in view of (6.34)-(6.38). Recall that F = 0 means that
the trajectories are in the homoclinic orbit (6.23). In this case,
we conclude that 6, 6y and E converge to zero. Note from (6.29)
and (6.39) that 7 does not necessarily converge to zero.

e Case b: If F # 0 and since ET is constant, then 7 is also constant.
However, a force input 7 constant and different from zero would
lead to a contradiction. We will give below a mathematical proof
of the fact that if E #0 then 7 =0 in I

Proof 6.1 We will prove that when 6o = 0, E is constant and E # 0,
and T is constant, then T should be zero. From (6.6) and (6.7) we get
mlllLo COS 9191 — m1l1Lg sin91912 = T (6.41)

[J1 + mll%] 91 — mlgll sin01 = 0 (642)

Moreover, the energy E (6.18) is constant and given by

1 A
F = 5(-]1 + mll%)ﬁf + mlgll (COS 91 - 1) é El (643)
Introducing (6.42) in (6.41), we obtain

T

sinf(acos 0y — 0%) (6.44)

with a = % and b= mqlyLo. The expression (6.43) gives us
1

02 = Ey + ¢ (1 — cos ) (6.45)

with By = ﬁ%ﬁ and ¢ = % Combining (6.45) and (6.44)

yields
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sin#;((a + ¢)cos 0y +d) = — (6.46)

-
b
with d = —(Ey + ¢). Taking the time derivative of (6.46), we obtain

6, ((a+c) (cos2 0, — sin? 61) +dcosb;) =0 (6.47)

If 6, = 0, then 6; = 0 and from (6.42) we conclude that sinf, = 0. If
01 # 0, then (6.47) becomes

(a +c) (cos?6; —sin®0;) +dcos 6 =0 (6.48)
Differentiating (6.48), it follows that
—6,sin6; [4(a + c)cos by +d] =0

If cosf; = (;fc) then 0, is constant, which implies 6, = 0, and so
sinf; =0 (see (6.42)).

In each possible case, we conclude that sinf; = 0. Then, 6, = 0.
From (6.41) it follows that T = 0. [ ]

We therefore conclude that 7 = 0 in I'. From (6.40) it then follows that
6o = 0 in I'. It only remains to be proved that ' = 0 when 6y = 0,
6y = 0 and 7 = 0. Since sinf; = 0, it follows that 6y = 0 (mod ),
since fy = m (mod 2) has been excluded by imposing condition (6.38).
Therefore, 6§y = 0 (mod 27), 6y = 0, 6; = 0 imply that E = 0. This
contradicts the assumption E # 0 in case b) and thus the only possible
case is E = 0.
The main result can be summarized in the following theorem.

Theorem 6.1 Consider the Furuta pendulum system (6.6)-(6.7) and
the controller in (6.39) with strictly positive constants kg, k., kg and
ks satisfying (6.36). Provided that the state initial conditions sat-
isfy inequality (6.38), then the solution of the closed-loop system con-
verges to the invariant set M given by the homoclinic orbit (6.23) with
(60,60) = (0,0). Note that T does not necessarily converge to zero. M

Remark 6.1 The above result is local in the sense that the system ini-
tial state should belong to the domain of attraction defined in (6.38).
However, the same result will hold for arbitrary initial conditions except
for a particular manifold bringing the system to the stable equilibrium
position with 6, = . [ |
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6.6 Simulation results

Figures 6.2 and 6.3 show the performance of the proposed control law.
The initial position is

us

bo=—7 =0
2.5m .
91=T 6120

and the parameters are Iy = 1.75x 1072, Ly = 0.215, m; = 5.38 x 1072,
I = 0.113 and J; = 1.98 x 10~%. The gains were chosen as kr = 480,
kg=1,k,=1and ks = 1.

6.7 Conclusions

We have proposed a control strategy to “swing up” the Furuta pen-
dulum. The control design is based on the passivity properties of this
rotational inverted pendulum. Convergence of the trajectories of the
system to a homoclinic orbit has been proved by using LaSalle’s invari-
ance theorem. We have presented simulations showing the performance
of the proposed strategy.
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Chapter 7

The reaction wheel
pendulum

7.1 Introduction

The reaction wheel pendulum is one of the simplest non-linear under-
actuated systems. It is a pendulum with a rotating wheel at the end,
which is free to spin about an axis parallel to the axis of rotation of
the pendulum (see Figure 7.1). The wheel is actuated by a DC-motor,
while the pendulum is unactuated. The coupling torque generated by
the angular acceleration of the disk can be used to actively control the
system. This mechanical system was introduced and studied in [108],
where a partial feedback linearization control law was presented.

In [76], Olfati-Saber transformed the reaction wheel (or inertia
wheel) pendulum’s dynamics into a cascade non-linear system in strict
feedback form, using a global change of coordinates in an explicit form.
Then, he proposed global asymptotic stabilization of the upright equi-
librium point using the standard backstepping procedure. In his ap-
proach, contrary to the strategy proposed here, the magnitude of the
control input increases with the norm of the state initial condition.

The control objective here will also be to swing the pendulum up
and balance it about its unstable inverted position. We will focus our
study on the swinging-up control law. The non-linear swinging-up con-
troller will be based on the total energy of the system. The control
design will exploit the passivity property of the complete Lagrangian
system dynamics. Note that the technique has been presented in [23].
Similar control strategies have been used to control other underactu-
ated mechanical systems in [59] for the cart-pole system, in [24] for the

89
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pendubot and in [21] for planar manipulators with springs.

In this chapter, we present two approaches based on the total energy
stored in the system. We make use of LaSalle’s theorem to prove that
the system trajectories asymptotically converge to a homoclinic orbit
in both approaches. Therefore, asymptotically, after every swing of the
pendulum, the system state gets successively closer to the origin.

The first approach proposed here is such that the wheel’s angular
velocity converges to zero but does not necessarily bring the wheel to a
desired angular position. Nevertheless, the control input can be made
smaller than any arbitrary upper bound. The second approach is such
that the wheel’s angular position converges to zero.

In Section 7.2, we develop the equations of motion of the reaction
wheel pendulum. In Sections 7.3 and 7.4, two different energy-based
control algorithms are presented. Simulation results are given in Section
7.5. The concluding remarks are presented in Section 7.6.

7.2 The reaction wheel pendulum

7.2.1 Equations of motion

The reaction wheel pendulum is a two-degree-of-freedom robot as shown
in Figure 7.1. The pendulum constitutes the first link, while the rotat-
ing wheel is the second one. The angle of the pendulum is ¢; and is
measured clockwise from the vertical. The angle of the wheel is gs.

The parameters of the system are described in the following table.

my : Mass of the pendulum

mo : Mass of the wheel

I :  Length of the pendulum

lg @ Distance to the center of mass of the pendulum
I; : Moment of inertia of the pendulum

I, : Moment of inertia of the wheel

@1 : Angle that the pendulum makes with the vertical
g2 : Angle of the wheel

T :  Motor torque input applied on the disk

We introduce the parameter m = ml.; +mol;, which will be used later.
The kinetic energy of the pendulum is K = £ (m1l% + I1) ;% and
the kinetic energy of the wheel is K3 = 1myl2gi%+115(g1 +¢2)°. There-
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Figure 7.1: The reaction wheel pendulum

fore the total kinetic energy is given by

1 ) .. 1.
K=K +K;= §(m1131 +mol? + I + L)gi1% + Lgigo + 5121122
(7.1)

The potential energy of the system is P = mg(cos(q1) — 1). Finally, the
Lagrangian function is given by

L = K-P
1 . N S

L = §(mll§1 +malf + I + I)gi” + Igigo + 512Q22
—mg(cos(q1) — 1) (7.2)

Using Euler-Lagrange’s equations
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D
)

oL . .
(a_ql) = (mul? + mal} + [ + I)g1 + Lgo
oLy mgsin(q1)
oL . .
(—) = Ixq1 + I2qo

q
oL
(%) -
0q2
The dynamic equations of the system are finally given by

(mil? + mal? + I + L)y + Logs — mgsin(q1) = 0 (7.4)
Lgi+Lgp = 7

In compact form, the system can be rewritten as follows

D(g)i+9(q) =u (7.6)

where ¢ = [ gl ] is the vector of generalized coordinates, u = [ ?_ ] is
2

the vector of joint torques, D(q) is the inertia matrix and is given by

[ mil+mlB+ L+ L L] [ du die
D(g) = [ I L] | da da (©.7)
and
—7 s'
o) = | PO | (78)

Note that the matrix D(q) is constant and positive definite. The equa-
tions of motion are also given by

di1gi +di2ga +9(q1) = 0 (7.9)
dongy +dapgy = T (7.10)

7.2.2 Passivity properties of the system

The total energy of the reaction wheel pendulum is

(7.11)




7.2. THE REACTION WHEEL PENDULUM 93

From (7.6)-(7.8) and (7.11), it follows that
E = {"D(g)§ — mgsin(q1)qy = g7 (7.12)

As a consequence, the system with 7 as input and ¢, as output is pas-
sive. The reaction wheel pendulum with zero control input (r = 0)
has an unstable equilibrium at (qi1,41,¢2) = (0,0,0) with energy
E(0,0,0) = 0 and a stable equilibrium at (g1, 41,4¢2) = (7,0,0) with
energy F(0,0,0) = —2mg. The disk position g2 can be arbitrary, since
the energy in (7.11) does not depend on ¢o, i.e. g2 is a cyclic vari-
able. Hence, the equilibrium points described above are not isolated
equilibrium points in the four-dimensional state space of the system.

The control objective will be to control the pendulum position ¢,
the pendulum velocity giand the disk velocity ¢z and to leave the disk
position go unspecified.

Let us consider the state vector z = [cos qy,singqy, g1, go]T. We will
bring the state vector z to [1,0,0,0]7.

7.2.3 Linearization of the system

In this section, we will study the controllability of the linearized system
about the origin. The equations of motion are given by (see (7.9) and
(7.10))

L dyp d12

G = det(D)mgsm(ql) det(D)T (7.13)

G = —2 mgsin(qi) + du1 (7.14)
det(D) de t(D)

where det(D) = dy1day — do1dy2 = (mllgl + mgl% + 11)12.

Let us consider the vector state X = [q1,q1, ¢2,¢2]. Differentiating
equations (7.13) and (7.14) with respect to the states and evaluating
them at the origin leads to the following linear system

@ 0 1 00 a 0
dla | _ ﬁzigp_)mg 000 a | ﬁl%j .
dt | g2 0 001 2 0

G2 qighymg 00 0] g 1)

=_AX + B

We then have
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0 —dj2
—d det(D)
3et(D) AB 0
B= = g
0 det(D)
_diy 0
det(D)
0 —d22d, m
—doodiy = @et(D))? ™9
A2 = | @OP™ g | O
O @er(D2 ™I
@ec(Dz™I 0
and det (B|AB|A2B|AB) = ‘™o _ g The lin-
(det(D))* (m1l2 +ma3+10)413 "

earized system is controllable. Therefore, a full state feedback controller
7 = —KTX with an appropriate gain vector K is able to successfully
stabilize the system in a neighborhood of the origin.

7.2.4 Feedback linearization

For completeness purposes, we briefly develop in this section the feed-
back linearization first presented in [108].
Consider the following output function

Yy =dnq +di2ge (7.15)
Differentiating (7.15), we obtain

y = diiqr +di2g2 (7.16)
y = mgsing (7.17)
y® = mgcos(qi)g (7.18)
y@ = mgcos(q)di — mgsin(q1)d (7.19)
From (7.9) and (7.10), we get
@ = de‘:izD)mg singy - de(:zzD) (7.20)

Introducing (7.20) in (7.19) yields

y®@ = smgcos(q)
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Thus, the system has a relative degree of four with respect to the output
d11¢1 + d12¢> in the region -5 < ¢; < §, i.e. when cos(q1) # 0. We can
define a controller 7, so the closed-loop system is given by

y(4) = —a3y(3) — @y — a1y — Y (7.22)

where s? + a3s® + ags? + 15 + ag is a stable polynomial. Therefore,
y® — 0. Finally from (7.16) and (7.17), it follows that (q1,d2) —
(0,0). The above shows that the reaction wheel pendulum is feedback
linearizable in the region |g1| < 7, i.e. when the pendulum angle q; is
above the horizontal.

7.3 First energy-based control design

Define the following Lyapunov function candidate
1
2

where kg and k, are strictly positive constants. The time derivative of
V1 is given by

1 . .
Vi = —kgE® + Qku (da1g1 + doag)? (7.23)

Vi = kgEE +k,(da1gy + daag) T
= (kgEqg2+ ky(do1qy + d22g2)) T

We propose a controller such that

T = —kq (kg Eqa + ky(d21g1 + d224g2)) (7.24)
which leads to
Vi = _1 (7.25)
kq

Equations (7.23) and (7.25) imply that V; is a non-increasing function,
V1 converges to a constant and V; < V;(0). This implies that the
energy E remains bounded as well as ¢; and ¢». Therefore the closed-
loop state vector z = [cos q1,singqy, g1, q'z]T is bounded and we can thus
apply LaSalle’s invariance principle.

In order to apply LaSalle s theorem, we are required to define a com-
pact (closed and bounded) set 2 with the property that every solution
of the system Z = F(z) that starts in Q remains in Q for all future
time. Therefore, the solutions of the closed-loop system z = F(z) re-
main inside a compact set 2 that is defined by the initial value of z.
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Let ' be the set of all points in Q such that V;(z) = 0. Let M be the
largest invariant set in I'. LaSalle"s theorem ensures that every solution
starting in 2 approaches M as ¢ — co. Let us now compute the largest
invariant set M in T".

In the set I', V; = 0 and from (7.25) it follows that 7 = 0 in I'. Note
that Vi = 0 also at the stable equilibrium point (q1,41,42) = (m,0,0).
Recall that the pendulum’s energy is E(m,0,0) = —27ng at the stable
equilibrium point. A way to avoid this undesired convergence point is
to constrain the initial conditions. Indeed, if the initial state is such
that

V1(0) < 2kgpm?g® (7.26)

then, in view of (7.23) and given that V3 < V;(0), the energy E will
never reach the value —2mg, which characterizes the stable equilibrium
point (g1, ¢1,42) = (m,0,0). The inequality (7.26) mainly imposes upper
bounds on |g;| and |ga].

Since E = ¢o7 (see (7.12)) and 7 = 0 in the invariant set, then E is
constant. From (7.23), it follows that

d21d1 + d22(jz =K (7.27)

for some constant K. Then, from (7.24), we get Egy = —5%X. We will
consider two cases: a) £ =0 and b) E = K # 0, for some constant K.

e Case a: F =0. From (7.24), we have
d21q1 + d22g2 = 0 (7.28)

Introducing (7.28) in (7.11), with F = 0, it then follows that

E = ¢TDg+mg(cosqi —1)=0
det(D
ed( )qf + mg(cosq; —1) =0 (7.29)
22

Since det(D) is a constant, equation (7.29) defines a particular tra-
jectory called a homoclinic orbit of the pendulum in the (qi,q1)
phase plane, which is a two-dimensional subspace of the four-
dimensional state space of the complete system. (see [24, 59]). It
means that g; = 0 only when ¢; = 0. The pendulum moves clock-
wise or counter-clockwise until it reaches the equilibrium point
(g1,q1) = (0,0). Then, from (7.28), it follows that g2 = 0 also.
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e Caseb: E = K # 0. Since Eg, is constant, then ¢, is also
constant. Thus from (7.27), ¢; is also constant. From (7.7)-(7.10)
and since 7 = 0, we obtain

SR d22

U= Get(D)
Since ¢ is constant, we have ¢; = 0 and from (7.30), we conclude
that g1 = O[n]. Note that the case when ¢; = =[2n] has been
excluded by imposing the constraint (7.26). Suppose now that
go # 0. From (7.24), since 7 = 0 and ¢; = 0, it follows that

k.
p=-_Ri2 g (7.31)
ke

mg sin qp (7.30)

However, since ¢; = 0, the energy (7.11) becomes
E = dpgs > 0 (7.32)

Therefore equations (7.31) and (7.32) lead to a contradiction,
which proves that the assumption ¢ = 0 is false. We finally
conclude that ¢ = 0. Moreover, when g2 =0, ¢ =0 and ¢; = 0,
E is also zero, which contradicts the assumption E # 0.

Finally, the largest invariant set is given by the homoclinic orbit (7.29)
together with the kinematic constraint (7.28). LaSalle’s invariance prin-
ciple guarantees that the system trajectories asymptotically converge
to this invariant set, provided that the initial conditions are such that
(7.26) is satisfied.

7.4 Second energy-based controller

In this section, we will propose another approach based on the total

energy of the system, using a similar strategy developed in previous

works [59] and [24]. Contrary to the algorithm proposed in the previous

section, the controller presented next will be such that the wheel angular

position gz will also converge to zero. Define the following Lyapunov
function candidate

1 5 1 1

Vo = §kEE + 2 3

where kg, k, and k, are strictly positive constants. From (7.7)-(7.10),

we get

kods + =kpas (7.33)

do di1

L= k@) T T den(Dy” (734
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Therefore

Vo = kgEE + kygoga + kpgaqo
= g2 (kgET — kysing, + ka7 + kpq2) (7.35)

where k; = %ﬁ; ko = Lfe’;—‘(ilDl). We propose a controller 7 such that

T(kEE + k) — k1 sing: + kpga = —kago (7.36)
which leads to
Va = —kaga? (7.37)
In view of (7.11), we have
E > —2ing (7.38)

In order to avoid singularity in (7.36), it suffices to choose kg and k,
such that for some € > 0

di1
kgFE + ko > kg(—2m k > 0 7.39
BE + k2 > kp( mg) + kv gy 2 € (7.39)
The stabilizing controller is of the form
—kqg2 — k ky si
;= K92 — Fpg2 + K18Ingy (7.40)

kgE + ko

From (7.33) and (7.37), we conclude that Vo < V5(0). This implies
that the energy F remains bounded as well as gi, g2 and go. Thus the
closed-loop state vector z = [cos ¢1,singqy, g1, g2, q'Q]T is bounded and we
can thus apply LaSalle’s invariance principle, as has been done in the
previous section.

Defining a compact (closed and bounded) set 2 and T the set of all
points in Q such that V3(z) = 0. Let M be again the largest invariant
set in I'. LaSalle’s theorem ensures that every solution starting in
approaches M as ¢t — oco. Let us now compute the largest invariant set
MinT.

In the set T, Vs = 0 and from (7.37) it follows that go = 0 and thus
g2 is constant in T'. Note that V5 = 0 also at the stable equilibrium
point (g1,491,42) = (7,0,0) and that 7 = 0 at this point (see (7.40)).
Recall that the pendulum’s energy is F(r,0,0) = —2mg at the stable
equilibrium point. We will avoid this undesired convergence point by
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imposing a constraint on the initial conditions. Indeed, if the initial
state is such that

V2(0) < 2kgim?g? (7.41)

then, in view of (7.33) and given that Vo < V5(0), the energy F will
never reach the value —2mg, which characterizes the stable equilibrium
point for go. The inequality (7.41) imposes upper bounds on |g;| and
|g2|. Note that since 7 in (7.40) is bounded and g2 = 0 in the invariant
set I', then E is constant (see (7.12)). Equation (7.34) can be rewritten
as

k k
g2 = —79% singy + k—jr (7.42)

Therefore, since ¢go = 0 we have
kot = k1 singy (7.43)
Introducing the above in (7.36) and since ¢, = 0, we obtain
keET + kpgo =0 (7.44)

We conclude that E7 is constant in I'. Since E is also constant, we
either have a) F =0 or b) E # 0.

e Case a: If E = 0, then from (7.44) g = 0. Note that 7 in (7.40)
is bounded since |F| < 2mg. Moreover, in view of (7.7), (7.8) and
(7.11), since g2 = 0 and F = 0, (7.11) reduces to

| _
E = Eduqlz + mg(cos(q1) —1) =0 (7.45)

which defines a homoclinic orbit of the pendulum in the (g1, q1)
phase plane. In this case, we conclude that g3, ¢go and F converge
to zero. Note that 7 does not necessarily converge to zero.

e Case b: If F # 0 and since E7 is constant, then the control input
T is also constant. We will prove next that in this case 7 = 0 in
.

From (7.9) and (7.10), we get

di1q1 mg sin g, (7.46)
dngr = T (7.47)
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Introducing (7.47) in (7.46), we obtain

d
mgsing; = ﬁ‘r (7.48)

Differentiating (7.48), it follows
mgcosqiq; =0 (7.49)

We conclude that either g; = 0 or cos(q;) = 0. If g = 0, then
from (7.47) we get 7 = 0. If cos(q;) = 0, then ¢; is constant and
we conclude also that 7 = 0. We therefore conclude that 7 = 0
in I'. Since 7 = 0, then from (7.48) sin(q;) = 0. This implies
that ¢; = 0,£2m,.... Note that the points ¢ = , 3... have been
avoided by imposing the constraint (7.41). From (7.44) we get
g2 = 0.

We finally conclude that the largest invariant set is M = {g» = 0, F =
0}. LaSalle’s invariance principle guarantees that the system trajec-
tories asymptotically converge to this invariant set, provided that the
initial conditions are such that (7.41) is satisfied.

7.5 Simulation results

In this section, we present the simulation results using MATLAB and
SIMULINK. In the model, we used the real system parameters of
the reaction wheel pendulum at the University of Illinois at Urbana-
Champaign. m; = 0.02 kg, mg = 0.3 kg, l; = 0.125 m, I,; = 0.063 m,
I, =47 x 1078 kg.m?, I, = 32 x 1075 kg.m? and g = 9.804. The initial
conditions are

g1 = 0.87 G =0

q2=0 go=0

For the first approach, we chose the gains kg = 0.01, k, = 200 and
kq = 0.1 and the results are shown in Figure 7.2. For the second
approach, we chose the gains kg = 400, k, = 0.01, k, = 0.1 and
kq = 0.05. Note that the gains kg and k, satisfy the condition (7.39).
The results are shown in Figures 7.3 and 7.4.

In both cases, the Lyapunov function decreases as expected. The
energy converges monotonically to zero, but note this is not necessarily
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Energy Function: E x10”° Control input
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Figure 7.2: Simulation results using the first controller (7.24)
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Angle of the pendulum Angular velocity of the pendulum
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Figure 7.3: Simulation results using the second controller (7.40)
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Energy function: E Lyapunov Function: V
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Figure 7.4: Simulation results using the second controller (7.40)
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always the case. The control input 7 converges to zero for the first
controller (see Figure 7.2) but does not converge to zero for the second
controller (see Figure 7.4). In both cases, the control input magnitude is
acceptable. The phase plots show convergence to the homoclinic orbit
in both cases. We have observed that the convergence rate is larger
for the first controller. The closed-loop behavior strongly depends on
the controller parameters kg, k, and k4. The parameters used in the
simulations have been selected by trying different values.

7.6 Conclusions

We have proposed two alternative approaches to swing up the reaction
wheel pendulum. Both approaches are based on the total energy of
the system and guarantee convergence of the pendulum to a homoclinic
orbit. The first controller is such that the torque input can be saturated
to any arbitrary value. The second controller is such that the wheel
reaches a desired position. Simulations have shown good performance
of both controllers.

We will give below a generalization of the main ideas developed for
the examples of pendulum systems for a class of Euler-Lagrange sys-
tems, which possesses particular properties. It is related to the work of
Shiriaev et al. [100].

7.7 Generalization for Euler-Lagrange systems

In this section, we propose to formalize the results developed for pen-
dulum systems and give some general conditions under which the tech-
nique can be applied. The Lagrangian function L of a system having
a vector of generalized variables ¢ = [z,%] in a configuration space
S =X xY is given by

Ligd) = K(0d) - Pl) (7.50)
Lig.d) = 5d"D(@)i - P (7.51)

where P(q) is the potential energy of the system. The corresponding
equations of motion are derived using Euler-Lagrange’s equations

d
Vil = Vol = 7 (7.52)
ngL—VyL =0 (7.53)

dt
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The control input vector is given by U = [r,0]7.
The equations of motion of the system can also be written in standard
form, as follows

D(q)i+C(g,9)g+G(q) =U (7.54)

with the following properties: D(q) is symmetric, positive definite and
D — 2C is a skew-symmetric matrix. Moreover, P is related to G(q) as
follows

G(q) = V4P (7.55)

The total energy of the system is given by
E(g,9) = K(g,9)+P(q) (7.56)

1. .
= 5d"D(g9)q + P(g) (7.57)

Then, using (7.54), (7.55), (7.52) and (7.53), the time derivative of F
is given by

9 Bla(t),d(t)) = &) 7 (1) (7.58)

Therefore, the total energy satisfies the passivity property. Let us con-
sider the desired energy Ey and the desired vector z4.
We propose the following Lyapunov function candidate

. k . ky . k
V(q1 q) = ?E(E(q) q) - Ed)2 + 71)"’1"'2 + 71"2) - 2:dlz (759)
Differentiating V along the solutions of system (7.54), we obtain

V = &7 [kp(E — Eg)T + kyi + ko(z — z4)] (7.60)

vV =zT [(kE(E — E))I + k,[I0]D(q)! [ é D T+ F(q, q')] (7.61)

where F(q,q) is a function that depends on L, z4, the parameters kg,
ky, k; and is given by

F(g,9) = kuolI 0]D(q) ! [-Cq — G] + ku(z — z4) (7.62)
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We propose a control law such that

(kE(E — E)I + k,[I 0]D(¢q)! [ é ]) T+ F(q,4) = —ki  (7.63)
which will lead to
V=—kiT& <0 (7.64)

if the following matrix is invertible

kg(E — Eg)I + k,[I 0]D(q)™" [ é ] (7.65)

We assume that the energy function is bounded from below, which
is normally the case for the pendulums. Therefore, there exist some
positive parameters kg and k, such that the matrix (7.65) is strictly
positive definite and thus invertible. Then, the stability analysis will be
based on LaSalle’s invariance principle. The objective is to prove that
along the closed-loop system solutions (g(t),4(t)), lim¢ 100 B = Ey
and lim; , ;0 ¢ = 4. On the other hand, this part is in general not
straightforward and has actually only been developed for each particular
system. Further studies on the subject are underway.




Chapter 8

The planar flexible-joint
robot

8.1 Introduction

In the two previous systems, i.e. the inverted pendulum in Chapter 3
and the pendubot in Chapter 5, gravitational forces are present in both
systems, since the pendulum and the pendubot move in a vertical plane.
On the other hand, a pendulum or a pendubot moving in a horizontal
plane has no potential energy. No gravitational forces are applied on
the system.

Numerous authors are also interested in controlling planar underac-
tuated manipulators with completely free joints. This is a challenging
non-linear control problem because it requires full exploitation of the
non-holonomic properties. Nakamura et al. [74] investigated the non-
linear behavior of a two-joint planar manipulator with the second joint
left free, from a non-linear dynamics point of view. They proposed a
positioning control for both links using a time-periodic input and pre-
sented an amplitude modulation of the feedback error. Arai et al. [2]
considered non-holonomic control of a three-DOF planar underactu-
ated manipulator, with the third joint being passive. They also proved
controllability of the system by constructing examples of the input tra-
jectories from arbitrary initial states to arbitrary desired states. The
trajectories for positioning are composed of simple translational and
rotational trajectories segments that are stabilized by non-linear feed-
back control. Note that the robot arms studied in [74] and [2] are really
underactuated and non controllable in their linear approximation.

In the present chapter, we will first consider a two-link planar robot
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with a spring between the links and only one actuator acting on the first
link. The idea of considering such a system with a spring will enable us
to develop an approach based on the total energy. The motivation for
such a system is that a single-link flexible robot can be approximated
by an n-rigid link robot with springs between the links. The practical
relevance of controlling such a system comes from the need of having
lighter robot arms, in particular for space applications.

Our control objective is to bring the two-link system to the origin.
The passivity properties of the two-link robotic mechanism are used as
a guideline in the controller synthesis, as has been done in the works
[21, 24, 59] and in Chapters 3 and 5. In the present chapter, it turns out
that we can propose a simpler controller compared to the ones developed
in Chapter 3, Chapter 5 and [21]. The control algorithm as well as the
convergence analysis is based on Lyapunov theory. Then, we will apply
the same approach to a three-link robot and stabilize the system at the
origin.

In Section 8.2, we recall the equations of motion of a two-link robot
with a spring between the two links and its properties. Then, in Sec-
tion 8.3, we will propose a control law based on an energy approach. In
Section 8.4, we will analyze the stability properties of the closed-loop
system. The performance of the proposed control law is shown in a sim-
ulation example in Section 8.5. In Section 8.6, the dynamic equations
of a three-link robot are given. Then, in Section 8.7 we will use the
same idea as in Section 8.3 to control the three-link robot. The perfor-
mance of the proposed control law will be again illustrated by means
of simulations in Section 8.9. Section 8.10 gives some conclusions and
remarks.

8.2 The two-link planar robot

8.2.1 Equations of motion

Consider, the two-link underactuated planar robot, with a spring be-
tween the two links (see Figure 8.1). We will assume that the system
moves on a horizontal plane (0zy).
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Figure 8.1: The two-link robot system

myp : Mass of link 1

mo : Mass of link 2

l; : Length of link 1

l; : Length of link 2

[, : Distance to the center of mass of link 1

lc, : Distance to the center of mass of link 2

I; : Moment of inertia of link 1 about its centroid
I, : Moment of inertia of link 2 about its centroid
g :  Acceleration due to gravity

@1 : Angle that link 1 makes with axis (Oz)

g2 : Angle that link 2 makes with link 1

71 : Torque applied on link 1

The three useful parameters are

6, = mllzl + mzl% + I
6, = mglfz + I (8.1)
03 = malyl,

Using the Euler-Lagrange formulation, the dynamic equations of the
system are

D(q)i+C(g,9)g+ Kq=r (8.2)
where ¢ = [ Zl ] is the vector of generalized coordinates, 7 = [ 61 ]
2

is the vector of joint torques, D(q) is the inertia matrix, C(q,q) is

0 0 {.
1l forces and K = [0 k] is the
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(8.3)

0, + 605 + 203cosqy 63 + 03 cos gy
0 + 65 cos go )

Do) - |

. _ | —03sin(g2) g2 —63sin(g2) g2 — O3sin(q2) ¢
C(q7 q) - [ 03 Sin (CI2) 111 0 (84)

The matrix D(q) is symmetric, positive definite for all g. Moreover,
D(q) — 2C(q,q) is a skew-symmetric matrix. This important property
of skew-symmetric matrices will be used in establishing the passivity
property of the system.

8.2.2 Linearization of the system

In order to study the controllabilty properties of the system, we will
linearize its equations of motion about the origin. Let us first recall
that the dynamic equations of the system can be rewritten by (see
(8.2), (8.3) and (8.4))

.. i ] ] 2 i ]
G =mi?§mz‘[9ze3smq2(q1+qz) + 63 cos gy sin (¢2) 47 (8.5)

+(02 + 65 cos g2)kqa + O271]

@ = 91—92‘:‘97;6—055; [—93(92 + 03 cos g2) sin gz (g1 + §2)°
—(61 + 03 cos g2) sin (g2) ¢f — (62 + B3 cos g2) 71 (8.6)

— (61 + 0 + 263 cos g2)kq2)

Let us consider the vector state Y = [q1, 41, g2, ¢2]. Differentiating equa-
tions (8.5) and (8.6) with respect to the states and evaluating them at
the origin leads to the following linear system

010 0 0
q.l 0 0 k(62463) 0 q.l 0
dlaqa | _ 810,62 || we-eg |,
dt | g 000 1 %@ 0 !
. —k(6)+02+260 . —0,-8
g2 00 ——————Q——(Oinggs 3 g2 91922_93
= AY+BT1

We then have
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0 b2
0, 0162—63
816,—02 0
B = 0 3 AB = —0,—8
016, —02
—6,-8
916,62 0
0 —k(02+03)2
—k(83+63)° "1"'6-"3’
2 _ 0102—65 3p _
A'B = 0 A'B = k(62463)(61+62+263)
2
k(62+83)(61+082+263) 816203
610262 0

and det (B|AB|A?B|A®B) = %;lig:j—gg;—f. The linearized system is con-
3

trollable. Therefore, a full state feedback controller 73 = —K Ty with
an appropriate gain vector K is able to successfully stabilize the system
around the origin.

8.2.3 Passivity of the system
The total energy of the system is given by

E =34"D(q)q + 3kg3 (8.7)

Differentiating this function, we obtain successively

E =¢TD(q)§ + 34" D(q)d + kgado
= ¢T(~C(g,9)d — Kq+ ) + 3¢ D(q)q + ¢"Kq (8.8)
=¢'r=qn

Integrating both sides of the above equation yields

/0 dirdt = E (¢(t),d(t) - E(9(0),4(0)) > —E(g(0),d(0))  (8.9)

As a consequence, the system with 7; as input and ¢; as output is pas-

: ¢ em (8.2) has an infinity of equilibrium
ontrol objective is to stabilize the
0,0) in the coordinate frame.
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8.3 Control law for the two-link manipulator

It follows from (8.7) that the desired value of the energy at the origin
is zero. The Lyapunov function candidate proposed here is

. Nk
V(g,4) = keE(g,4) + 50 (8.10)

where kg and kp are strictly positive constants. Note that V(q,q) is a
positive definite function for k¥ > 0. Differentiating V' and using (8.8),
we obtain

V =q(ken +kpgr) (8.11)

We propose a simple PD controller such that

1 )
= (—kpa1 — kpg1) (8.12)
E

where kp is also a strictly positive constant. It leads to

V = —kpg? (8.13)

8.3.1 Equivalent closed-loop interconnection

This section gives the equivalent closed-loop interconnection of the sys-
tem and refers, among others, to the work of [14, 56, 57]. Note that
this interpretation is a possible way to study stability properties of the
system. Indeed, we can interpret the dynamics of the system as the neg-
ative interconnection of two passive blocks and then, using the passivity
theorem, we can conclude on stability.

Looking at the closed-loop system (8.2) using the PD controller
(8.12), we can interpret these dynamics as the interconnection of two
subsystems with respect to inputs u;, uz and outputs y; and y2, with
y1 = uz and y2 = —u;, and

(8.14)
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This is motivated by the fact that the two-link planar robot dynamics in
(8.2), with the control law in (8.12), defines a passive operator between

u1 and y; (see (8.9)), with state vector Z and dynamics

D(9)i+C(g,9)g+ Kg=7=wu (8.15)

Let us write the second subsystem in state space form as

731 = U2
. . (8.16)
V2 =t + 2w

with z1(0) = ¢1(0). Its transfer function is given by H(s) = El'fE—’st—s
Thus, H(s) is positive real (PR), see Definition 2.3, in [56]. Applying
the passivity theorem, it follows that ¢; € L?(JR"). Notice that this
is a consequence of the fact that H(s) defines an input strictly passive
operator, see Theorem 2.3 2), in [56]. The storage functions of each
subsystem are equal to kgE for the first subsystem and kTPq% for the
second subsystem. The sum of both storage functions yields the desired
Lyapunov function defined in (8.10). The interconnection is depicted
in Figure 8.2.

What is important is that we can systematically associate with these
dissipative subsystems some Lyapunov functions that are systematically
deduced from their passivity property. This is a fundamental property
of dissipative systems that one can use to calculate Lyapunov functions
for them.

Note also that all the fundamental theory on dissipative systems
is extensively related to the well-known Kalman-Yakubovich-Popov
lemma, which is one of the key results in control theory.

8.4 Stability analysis

The stability analysis carried out will be based on LaSalle ‘s invariance
principle (see for instance [46], Theorem 3.4, page 117). In order to
apply LaSalle’s theorem, we are required to define a compact (closed
and bounded) set 2 with the property that every solution of system
(8.2) that starts in Q remains in §2 for all future time. Recall that the
Lyapunov_function candidate V_is positive definite. Since V(q,¢) in
(8.10) is non-increasing along the trajectories, (see (8.13)), then ¢, ¢
are bounded. Therefore, the solution of the closed-loop system remains
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=T = ]
1 System yl q]

k, +k, s
Yy, EE S u,

Figure 8.2: The equivalent representation as the negative feedback in-
terconnection of a passive system and a SPR transfer function

inside a compact set €2 that is defined by the initial state values. Let
T be the set of all points in Q such that V(q,4) = 0. Let M be the
largest invariant set in I'. LaSalle s theorem ensures that every solution
starting in {2 approaches M as t — co. Let us now compute the largest
invariant set M in T'.

In the set T' (see (8.13)), V = 0, i.e. ¢; = 0. This implies that g
and V are constant. From (8.10), it follows that E is also constant.
Regarding (8.12), it follows that the control law has been chosen such
that

—kpgr = kgmi + kpqy (8.17)

From the above equation, we conclude that 7 is constant in I'. Recalling
that E is also constant, we either have a) £ = 0 or b) E # 0. Let us
study both cases.

e Case a: If F =0, we have

1
2
which implies that g = 0 and g2 = 0. From (8.2), (8.3) and (8.4),

it then follows that 7 = 0. Therefore, from (8.17) it follows that
gi = 0. The trajectories converge to the desired position.

1
E = 50y4; + kg3 =0

e Case b: If £ # 0 but is constant
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1, 5, 1
E = 592q§ + Ekqg = cte

We also have 11 as constant. Note that if the torque 7; is constant
and different from zero, the position of the first link ¢; cannot remain
constant. Since q; is constant, we conclude by contradiction that 7 is
zero. From (8.17) it follows that ¢; = 0.

Note that the second link cannot move without exerting a force on
the first link. Since the torque input 7, is zero and ¢; = 0, we can
conclude that ¢ should be zero.

All this argument can also be proved mathematically as shown below.

We will now study, in more detail, the case: 13 = cte, ¢ =0, g1 = 0.
Our objective is now to conclude that ¢z, g2, g2 are also zero, and that
q =0.

The system (8.2) for 71 = cte, ¢1 = 0 and ¢; = 0 becomes

(92 + 63 cos q2) go — 03(]'% sings = 7 (8.18)
0242 + kqo

Il
o
—~
oo
ot
=)

Introducing (8.19) into (8.18), we obtain

(62 + 65 cos g2) kg2 = —9392:1'% singy — 627y (8.20)

By taking the time derivative of (8.20), we have

kg (02 + 03 cos g2) — kf3gada singa = —203024ada sin ga — 030245 cos go
(8.21)

Note that ¢o is a common factor in the above equation. If g; is zero in a
given interval of time, we will conclude directly that gz = 0 (see (8.19)).
If it is not zero in an interval of time, we can divide the equation above
by ga.

We will therefore study separately the case when ¢, = 0 and when
g2 7.0 for some interval of time.

Case 1) If go = 0 then g» = 0 and from (8.19), we have g = 0 and
actually £ = 0.
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Case 1i) If go (t) # 0. The equation (8.21) becomes, using (8.19)

k (02 + 03 cos g2) — kf3gasings = —20302G2sin gz — 036243 cos go
= 2k93q2 sin q2 — 9302@% COs q2

Thus
k (02 + 63 cos ¢2) + 030243 cos g2 = 3k03q, sings (8.22)
Differentiating equation (8.22), we get

—kO3q2 sings — 9293(}% sin gy + 260203¢2g2 cos gy = 3k0sq- (sin q2
+g2 cos g2)

Dividing the above by 63 and g2, and replacing 2g> by —kg- (see (8.19)),
we obtain

—0542 sin o = 4k sin g + 5kqo cos ga (8.23)
Taking the time derivative of (8.23), it follows that
—202G2G2 sin g2 — 023 cos g2 = 4kdoa cos g — 5kgada singo + 5kda cos g2
Dividing again by ¢» and replacing 62¢> by —kg2 again (see (8.19)), we

obtain

—0243 cos g2 = 9k cos ga — Tkga singo (8.24)

By taking the time derivative of (8.24), we then have

—20242&2 Cos g2 + qu% singg = —9k(jg sings — 7kq2 sings — 7kq2(jz COS @2

Dividing by ¢z, and replacing 62q> yields

—0542 sin gy = 16k sin gy + 9kqy cos o (8.25)
Combining (8.23) and (8.25), it follows that

cosqy =0 (8.26)
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We now differentiate (8.26), to obtain

32 cos g2 + g2 cos g2 — gag2sings = 0

Dividing by ¢2 # 0, and taking the time derivative, we obtain

—4qo sings — g2 5in gz — g2g2 cos g2 = 0

and so

5singy + g2 cosqa = 0 (8.27)

From (8.26) and (8.27), we finally obtain

singy =0

From (8.26) and the above, we conclude that

g2 =0

This last conclusion contradicts the premise, i.e. ¢z (t) # 0. Therefore,
the particular case ii) is not possible. The only case is finally: g2 = 0,
g2 =0, g2 =0 and E = 0. So, as in case a), we finally have 73 = 0 and
from (8.17), it follows that ¢; =0 .

From the analysis above, the largest invariant set M is given by the
desired position (¢1, 41, g2, ¢2) = (0,0,0,0) with £ = 0. All the solutions
converge to the invariant set M.

LaSalle’s theorem allows us to establish asymptotic stability. The
convergence rate to the origin depends on the controller parameters kp,
kD and k E-

8.5 Simulation results

In order to observe the performance of the proposed control law based on
the energy, we performed simulations on MATLAB, using SIMULINK.

We considered the system taking the parameters 6; 1<;<3 as follows:
0, = 0.0799, 65 = 0.0244, 65 = 0.0205. We have some freedom in the
choice of the coefficients kp , kp and kg.
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Figures 8.3 and 8.4 show the results for kp =1, kp = 1, kg = 1, for
a stiffness constant k¥ = 1 and for an initial position

Q. Q
[y
i
Owl
Q.

NN
Il
O wly

rol law brings the state of the sys-
at the energy E goes to zero.
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Energy Function: E Control law: Tau

0.8

-25 - -
0

Figure 8.4: Performance of the system
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8.6 The three-link planar robot
This section presents the study of an extension of the proposed control

scheme for a three-link robot manipulator having an actuator only in
the first link (see Figure 8.5).

Figure 8.5: The three-link robot system

my : Mass of link 1
mo : Mass of link 2
ms : Mass of link 3

Iy : Length of link 1
Il  : Length of link 2
I3 : Length of link 3
l., : Distance to the center of mass of link 1
le, Distance to the center of mass of link 2
le, Distance to the center of mass of link 3
I; : Moment of inertia of link 1 about its centroid
I, : Moment of inertia of link 2 about its centroid
I3 : Moment of inertia of link 3 about its centroid
g : Acceleration due to gravity
g1 : Angle that link 1 makes with axis(Oxz)
g2 : Angle that link 2 makes with link 1
gs : Angle that link 3 makes with link 2
-~ o onedinks 1

he same as seen in Section 8.2.1.
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The six other ones are given by
(0 =Is+ms (2, +12+13)

07 =mslil,
O = mslal,
J br Ll (8.28)

0o = I3+ mg3 (123 + l%)
. 011 = 13 + mglzs

We obtain the dynamic equations of motion by using an Euler-Lagrange
formulation. In matrix form, the third order system becomes

D(q)i+C(g,9)¢+Kg=1 (8.29)
q 71
where ¢ = | g2 | is the vector of generalized coordinates, 7 = | 0
a3 0

is the vector of joint torques, D(q) is the inertia matnx C( ,q) is the
vector of Coriolis and centrifugal forces and K = 0 k2 is the

stiffness matrix of the two springs. Here

di1 di2 dis
D(q) = | da1 dyo do3 (8.30)
dz1 di3p ds3

and
hgz + 743 k(g1 +g2) + 343 7 (41 + g2 + g3)
C(q,q) = | —hg2+ hags hags h4 (41 + g2 + ¢3)
—jg1 — haga  —ha (g1 + g2) 0
(8.31)

di1= 6 +92+96+2(93+99)C08q2

+ 207 cos (Q2 + Q3) + 2603 cos g3

di2 = do1 =02+ 010+ (05 + 69) cos g2 h=hiths+hs

] = hs + hg
+ 07 cos (g2 + g3) + 263 cos g3 hy = —63sings
d13 = d31 = 01]_ + 07 COos (q2 + q3) h2 = —09 Sinq2
+ 03 cos g3 hs = —67sin(g2 + ¢3)
dyz = 03 + 019 + 205 cos g3 hgy = —0Ogsings

do3 = d3z = 611 + 0Oz cosgs
dsz = 6n
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Recall that the following properties are satisfied, i.e. the matrix D(q)
is symmetric, positive definite for all ¢ and D(q) — 2C(q,q) is a skew-
symmetric matrix.

8.7 Control law for the three-link robot

Our control objective is to stabilize the system around the origin, i.e.
(¢1,61,92,42,93,43) = (0,0,0,0,0,0) in the coordinate frame. The Lya-
punov function candidate proposed here is the same as for the two-link
robot

ko

V(g,9) = kpE(g,d) + 50 (8.32)

where kg and kp are strictly positive constants. The total energy is

E =14"D(q)q + 3kad} + 3ksq3 (8.33)

and the time derivative of F is again

E =q¢n (8.34)

Note that V(q,q) is a positive definite function for k; and k3 > 0.
Differentiating V' and using (8.34), we obtain

V =g (kg + kpq1) (8.35)

As an immediate consequence, we propose the same controller as for
two links

1 .
n= (—kpq1 — kpq1) (8.36)
E

which simplifies as

(8.37)
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8.8 Stability analysis

The analysis will again be based on LaSalle’s invariance principle (see
Section 8.4). We also compute the largest invariant set M in T.

In the set I’ (see (8.37)), V = 0, i.e. ¢, = 0. This implies that ¢,
and V are constant in the set I'. From (8.32), it follows that E is also
constant. Note that g, ¢ are also bounded. From (8.36), it follows that

the control law has been chosen such that

—kpg1 = kgm1 + kpqi (8.38)

From the above equation, we conclude that 7; is constant in I'. Since
E is constant, we either have a) E =0 or b) E # 0.

e Case a: If E = 0, then since D is symmetric and positive definite,
from (8.33) it follows that g = 0, ¢ = 0, g3 = 0 and ¢3 = 0. From
(8.29), (8.30) and (8.31) it follows that 7, = 0. Therefore, from
(8.38) it follows that ¢; = 0. Finally, the trajectories converge to
the desired position.

e Case b: If £ # 0 but is constant, from (8.33), E has the form

1 , 1 1, .. 1 1
E= iazqg + §a3q§ + ) 5Pijdid; + 5’62(1% + §k3q§ = cte
$,J=2,3;1#]

We recall that 7 is constant (see (8.38)). As seen in Section 8.4,
if the torque 7 is constant and different from zero, the position of
the first link ¢; cannot remain constant. Since q; is constant, we
conclude by contradiction that 7 is zero. From (8.38), it follows
that ¢ = 0. Note that the second link cannot move without
exerting a force on the first link. Since the torque input 7 is zero
and ¢; = 0, we can conclude that g» should be zero. Since ¢ = 0,
then ¢ = 0.

The system (8.29) for ; =0,41 =0, ¢ =0, ¢ =0, go = 0 and
g2 = 0 becomes

0 = (011 +07cos(q2+ g3) + Oscosqs) g

— (7 sin(ga + q3) + Og sing3)¢> (8.39)
0 = (01 +0scosqs)is — Ossingsds +kagz  (8.40)
0 = 61143+ k33 (8.41)
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Introducing (8.41) into (8.39) and (8.40), we obtain successively

..o ks
—0g sin q3q§ = qu’(@u + 07 cos(g2 + g3) + 63 cos q3)

+07 sin(gz + ¢3)d3 (8.42)

— k36 ) )
kaga = 9131 " cos(g2 + ¢3)gs — O7 sin(gz + q3)d5(8.43)

Differentiating equation (8.43) and using ¢> = 0, we get

k367
0 = B [sin(gz + ¢3)g3gs — cos(g2 + g3)qs]

~07 cos(g2 + g3)g3 — 207sin(q2 + g3)gads  (8.44)
Case i) If g3 = 0 then g3 = 0. From (8.40), we have ¢, = 0 and
from (8.41), g3 = 0. Therefore, we also have E = 0.
Case i) If g3(t) #0

Dividing equation (8.44) by ¢3 and replacing g3 by —%‘l‘lf (see
(8.41)), we obtain

3ks . } k
Wf sin(g2 + ¢3)g3 — cos(qz + ¢3)(ga® + 511) =0 (845)

Taking the time derivative of (8 45), using g2 = 0, dividing by g3
and again replacing §3 by — , it follows that

5ks 4ks
o cos(g2 + g3)g3 + sin(gz + tI3)( Tt gs*) =0 (8.46)

Then, differentiating equation (8.46) and using the same simplifi-
cations as above, we finally obtain

Tks

o 9k
—= sin(gz + ¢3)g3 — cos(g2 + g3)(gs2 + =—>) =0 (8.47)
011 011

Introducing (8.45) into (8.47), we have

-7 ) k . 9k
—= cos(gz + g3) (g3 + o) + cos(qz + g3)(gs2 + "2y =0 (8.48)
3 611 011

Thus we have either case a)

cos(gz +g3) =0 (8.49)
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or case b)

—g3® + oks _ g (8.50)
611
— Case a: Since ¢go = 0, then g is constant. Using equation
(8.49), g3 is also constant. Therefore, g3 = 0 and g3 = 0
too. Equation (8.41) implies g3 = 0 and equation (8.40)
implies g2 = 0. On the other hand, this contradicts (8.49).
Therefore, we only can have (8.50).

— Case b: g3? is constant, then ¢3 = 0 and with (8.41), g3 =0
and so g3 = 0. This last conclusion contradicts the premise
of case ii), i.e. g3 # 0.

In conclusion, the only case is the following: g2 = 0, g3 = 0, g3 = 0,
gs = 0 and E = 0 (case a)). Finally, the largest invariant set M is
given by the desired position (g1, 41,42, 42, 43,43) = (0,0,0,0,0,0) with
E = 0. All the solutions converge to the invariant set.

8.9 Simulation results

The performance of the control law can be viewed on the following
figures, performed by simulations.

The values of the parameters 6; 1<;<3 are the same as those taken in
Section 8.5. The other ones were chosen as follows: fg = 0.08, 7 = 0.01,
0g = 0.01, 6 = 0.01, 6,0 = 0.07, 6,1 = 0.02.

Moreover, Figures 8.6 and 8.7 give the results for kp = 1, kp =1,
kg = 1, for stiffness constants ko = 1, k3 = 1 and for an initial position

=% =73 a3 =7%
g =0 g2=0 g3=0

Simulations showed that our control law brings the state of the system
to the origin. Note that the energy E goes to zero.

8.10 Conclusions

We_have proposed a new control strategy for underactuated flexible-
joint robot manipulators. The controller design is based on an energy
approach and the stability has been studied using LaSalle’s invariance
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Figure 8.6: States of the system
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principle. It has been proved that the controller globally stabilizes the
origin. The technique has been developed for manipulators having two
and three links and can be extended for the general case. Note that
a one-flexible link manipulator can be approximated as an n-rigid link
robot with springs between the links having only a motor acting on the
first link. Therefore, the proposed method can be seen as an approxi-
mate way of controlling a one-flexible link robot manipulator. Examples
have been presented showing that the controller performs well in simu-
lation for the two- and three-link cases.




Chapter 9

The PPR planar
manipulator

9.1 Introduction

In the last few years, we have witnessed great interest in the control
of robot manipulators with elastic joints and links. In this chapter, we
will consider a planar elastic manipulator with three actuated joints,
wherein the third actuated joint is coupled to the end effector through
an elastic joint. This system is in fact a planar robot with two prismatic
and one revolute (PPR) joints, moving on a horizontal plane so that no
gravitational forces appear in the system. The three PPR joints are
actuated, while the elastic degree of freedom appearing in the system is
not actuated. Therefore, the system is underactuated, since it has four
degrees of freedom with only three control inputs. This example is a
type of robot manipulators that exhibit features of joint elasticity and
kinematic redundancy [88].

A model of this robot manipulator has been presented in the pa-
per of Baillieul [8], in which he described several problems in planning
motions for kinematically redundant robots with flexible components,
wherein the goal is to exploit redundant degrees of freedom to minimize
the dynamic effects of joint elasticity. Robots with elastic components
can “store energy” and such energy storage enriches the set of possible
modes of behavior of the mechanism that can be exploited to achieve
control objectives that would not be possible with rigid-link mecha-
nisms. The paper deals with the problems of using robot kinematics to
avoid storing elastic energy. As an example, he developed point-to-point
motions in the planar elastic manipulator using fifth order splines.
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Reyhanoglu et al. [88] presented a theoretical framework for the
dynamics and control of underactuated mechanical systems that satisfy
non-integrable acceleration relations. They introduced a non-linear con-
trol system formulation and analyzed controllability and stabilizability
properties, which can be useful for further research in this area. The
planar PPR robot illustrates their results. This example is indeed a
new control theoretical formulation that incorporates a specific design
constraint, which imposes a zero torque on the elastic joint.

In the present work, we do not avoid storing elastic energy. We will
in fact incorporate the elastic mode in our control stabilization problem.

The stabilization algorithm proposed here is related to the works
of [18, 21, 24, 59] and the previous chapters in which the total energy
of the systems is used in the control of underactuated manipulators.
The passivity properties of the system will be analyzed and we will
use an energy-based approach to establish the proposed control law.
The control algorithm as well as the convergence analysis are based on
Lyapunov theory and LaSalle’s invariance theorem. The performance
of the proposed control law is shown in simulation.

9.2 System dynamics

Consider the model of the planar (PPR) redundant manipulator with
one elastic degree of freedom as presented in Figure 9.1. It consists of
a hub mass body M, which can translate freely in the plane, and can
be rotated by any angle 6 with respect to a fixed horizontal axis and a
massless arm at the tip of which the end-effector is attached. The arm
is attached to the hub by a revolute joint and a torsional spring whose
neutral position is ¢ = 0. The two degrees of freedom of the translation
of the mass M as well as the angle 6 through which the hub is rotated
can be directly controlled. The variable ¢ measures the deviation of
the mechanism’s arm from the assigned value §. Whenever the variable
¢ is displaced from zero, it induces a restoring torque —k¢, where k
denotes the torsional spring constant. Let (zp,ys) be the cartesian po-
sition of the base body and let (z,y) denote the end-effector position
of the manipulator. Therefore, the kinematic relationship between the
configuration variables (zp, s, 0, #) and the end-effector position (z,y)
is given by
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()-(2)+(ibra)y o

Figure 9.1: The planar PPR robot
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9.2.1 Equations of motion via Euler-Lagrange formula-
tion

In this section, we will derive the equations of motion of the system.
We first present the kinetic energy of the hub mass M

1 1.
Ky = M (i +4) + 5167 (9.2)

The kinetic energy of the end-effector of the manipulator is given by

1
Ky =om (2% +9%) (9.3)

The energy stored at the torsional spring is

P = %kq&z (9.4)

Then the total energy of the system is (using (9.1))
F = Ki+Ky+P
_ 1 2 oy, Loy \2 1o
= (M+m) (z*+9°) + M1 (6+¢>) + 510
. 1
+M1(6 + ¢)(isin(0 + ¢) — g cos(6 + ¢)) + §k¢>2 (9.5)
Therefore, the Lagrangian function is given by
L = Ki+K;—P
1 oy Lo N2 1
L o= S(M+m) (@ +3?) + ;M (6+4) + 510
. ) ) 1
+MI(6 + ¢)(dsin(f + @) — ycos(d + @) — §k¢2 (9.6)

The equations of motion are derived using Lagrange’s equations

d (0L . oL .
i (5 @d)-5e@i=r (0.7)

where ¢ = (ql,...qn)T = (z,9,0,¢)7 represents the generalized vari-
ables, one for each degree of freedom of the system, 7 = (71, ...,Tn)T
denotes forces that are externally applied to the system.
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We therefore have

) - (3)
) = MI(6 + ¢) [& cos(8 + ¢) + ysin(6 + ¢)]
) - (%)

) = (m+ M)z + Mlsin(0 + ¢)(0 + ¢)

)

)

= (m+ M)y — Mlcos(d + ¢)(0 + ¢)

16 + MI%(6 + ¢) + MI(isin(0 + ¢) — 7 cos(6 + ¢))

(—) = MI*0+ ¢) + Ml(zsin(0 + ¢) — g cos(6 + ¢))
The virtual work is given by
W = F16(z — lcos(0 + ¢)) + Fad(y — Isin(0 + ¢)) + T460

The equations of motion can then be written as follows

(M 4+ m)z + MI(0 + §)sin(6 + ¢) + MI(6 + ) cos(6 + ¢)

=F (9.8)
(M +m)j — MU0 + $) cos(0 + ¢) + ML(6 + ¢)°sin(0 + ¢)
=F (9.9)
MI(@sin(0 + ¢) — jjcos(8 + @) + (I + MI®)0 + M1
=1 (Fysin(0 + ¢) — Focos(0 + ¢)) + T (9.10)
MI(3sin(@ + ¢) — jcos(8 + ¢)) + MI%6 + M%) + k¢
=1 (Fysin(0 + ¢) — Frcos(0 + ¢)) (9.11)
They can also be rewritten in compact form as
D(q)§+Clq,9)4+ Kq=r (9.12)
where
M+m 0 hs hs

0 M+m —h —h,
e I+ M2 MI?
¢ M2 M2

(9.13)
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with
hs = Mlsin(0 + ¢) (9.14)
he = Mlcos(6 + ¢) (9.15)
0 0 Mlcos(0+ ¢)(0 + ¢) Ml cos(8 + ¢)(8 + ¢)
| 0 0 Misin(0+¢)(0+¢) Misin(d+ ¢)(8 + ¢)
Clad =1, 0 0
0 0 0 0
(9.16)
0 00O T
10000 1y
E=1000 0 7= 1 ¢ (9.17)
000 k ¢
and
F
_ P
"= | I(Fysin(0 + ¢) — Fycos(0 + ¢)) + T (9.18)
[(Fysin(6 + ¢) — Facos(0 + ¢))
Note that D(q) is symmetric. Moreover,
det(D(q)) = I(M + m)mMI* > 0 (9.19)

Therefore D(q) is positive definite for all g. From (9.13) and (9.16), it
follows that (using (9.14) and (9.15))

0
: ..o 0 -, —h

D(q) -2C(q,9) = (6 +¢) (9.20)

which is a skew-symmetric matrix. An important property of skew-
symmetric matrices, which will be used in establishing the passivity
property of the system is

Vz (9.21)
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9.2.2 Passivity properties of the planar PPR manipula-
tor

The total energy of the robot is given by

1. A |
E = 54" D(g)q + 5k¢” (9-22)

Therefore, from (9.12)-(9.21), we obtain
E = ¢"D()i+ 57" D(g)q+q"Kq
= ¢"(-Clg,9)g - Kg+7) + 54" D(a)q + " Kq
= ¢'r
= P&+ Fyy + (Fysin(0 + ¢) — Fycos( + ¢))(6 + ¢) + T6
= Fi[i+1sin(0+ )6+ qé)] + Ry [y —lcos(0 + 4)(6 + q'b)] +T6
= 2Ty (9.23)

where u and z are defined as follows: v = [Fy, Fy, T)T and z =
[x+1—lcos(0+¢), y—Isin(0+¢), 6]T. Note that z = [&+Isin(+
P)O+¢), y—lcos(0+¢)(0+¢), 6]T. Integrating both sides of the
above equation, we obtain

/ t :Tudt = E(t) — E(0) (9.24)
0

Therefore, the system having u as input and 2 as output is passive.
Our control objective is to move the system from any given initial
configuration (z°,4°,60°%, ¢°) to the origin (0,0,0,0).

9.3 Energy-based stabilizing control law

The passivity property of the system suggests the use of the total energy
E in (9.22) and the vector z, in the controller design. We wish to bring
E to zero. Note that E is a positive definite function. We propose the
following Lyapunov function candidate

. 1
V(g,d) = kEE(q,q)+§zTQz
ke

= kgE(q,q) + - (z+1—lcos(0 + $))?
+%(y — Isin(6 + ¢))* + %"-92 (9.25)
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kz 0 O
where Q = [ 0 k O :| and where kg, ks, ky, kg are strictly positive
0 0 kg

constants. Note that V(q,q) is a positive definite function. Taking the
time derivative of V and using (9.23), we obtain

V = kB +ky(z+1—1cos(d+ ¢))[ + Isin(0 + ¢)(6 + 4)]
+ky(y — Isin(0 + ¢))[g — Lcos(0 + ¢)(8 + )] + kg6
= [&+Isin(0 + ¢)(0 + ¢)|(keF1 + kz(x + 1 — Lcos(0 + ¢)))
+[§ — Lcos(0 + ¢)(6 + )| (ke Fa + ky(y — Isin(0 + ¢)))
+O(kET + keb) (9.26)

We propose the control inputs as follows

T = i[—k,,e — 6] (9.27)
ke
F = ki[k:z(—:l: —l+lcos(0+¢))—z
E
—Isin(0 + ¢)(0 + ¢)] (9.28)
F, = é[ky(_y +1sin(6 + ¢)) — § + Lcos(8 + ¢)(6 + $)](9-29)

Introducing the above in (9.26), one has

V = —(&+Isin(0 + )0 + $))2
— (4 — Lcos(0 + ¢)(6 + ¢))* — 62 (9.30)
= -T2 (9.31)

9.3.1 Equivalent closed-loop interconnection

This section gives the equivalent closed-loop interconnection of the sys-
tem and refers, among others, to the work of [14, 56, 57]. Note that
this interpretation is a possible way to study stability properties of the
system. Indeed, we can interpret the dynamics of the system as the neg-
ative interconnection of two passive blocks and then using the passivity
theorem, we can conclude on stability.

Looking at the closed-loop system (9.12) using the control inputs
(9.27), (9.28) and (9.29) we can interpret these dynamics as the inter-
connection of two subsystems with respect to inputs vector u;, uz and
outputs vector y; and ys, with y; = uz and y = —u;, and
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e (9.32)

y1 =2

where u = [F} F, T|T with (9.27), (9.28) and (9.29) and 2 = [z +
Isin(0 + ¢)(0 +¢) y—1lcos(0+¢)(0@+¢) 6]T. This is motivated
by the fact that the planar PPR manipulator dynamics in (9.12), with
the control inputs in (9.27), (9.28) and (9.29) defines a passive operator
between u; and y; (see (9.24)), with state vector g and dynamics

D(q)§+C(q,4)g+ Kq= (9.33)

Let us write the second subsystem in state space form as

2=U2

(9-34)
y2 = H(s)up
where the transfer matrix H(s) is given by
kats
e 0 0
Hs)=| 0 %2 o (9.35)
k.
0 0

Thus, H(s) is positive real (PR) (see Definition 2.3, in [56]). Applying
the passivity theorem, it follows that z € L2(JR"). Notice that this is
a consequence of the fact that H(s) defines an input strictly passive
operator, see Theorem 2.3 2), in [56]. The storage functions of each
subsystem are equal to kg E for the first subsystem and %zTQz for the
second subsystem. The sum of both storage functions yields the desired
Lyapunov function defined in (9.25). The interconnection is depicted
in Figure 9.2.

What is important is that we can systematically associate with these
dissipative subsystems some Lyapunov functions that are systematically
deduced from their passivity property. This is a fundamental property
of dissipative systems that one can use to calculate Lyapunov functions
for them.
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System

v, H(s) )

Figure 9.2: The equivalent representation as the negative feedback in-
terconnection of a passive system and a SPR transfer function

Note also that all the fundamental theory on dissipative systems
is extensively related to the well-known Kalman-Yakubovich-Popov
lemma, which is one of the key results in control theory.

The main result is stated in the following theorem.

Theorem 9.1 Consider the planar PPR robot (9.12). Taking the Lya-
punov function candidate (9.25) with strictly positive constants kg, kz,
k, and kg, then the solution of the closed-loop system (z,y,0, ) with
the control inputs (9.27), (9.28) and (9.29) converges to the origin
(0,0,0,0). |

The proof will be developed in the following section.

9.4 Convergence and stability analysis

We will mainly use LaSalle “s invariance theorem to prove the above the-
orem. In order to apply LaSalle’s theorem, we are required to define
a compact (closed and bounded) set © with the property that every
solution of system (9.12) that starts in  remains in Q for all future
time. Recall that the Lyapunov function candidate V is positive defi-
nite. Since V(g,q) in (9.25) is a decreasing function, (see (9.31)), then
q and ¢ are bounded. Therefore, the solution of the closed-loop system
remains inside a compact set {2 that is defined by the initial state val-
ues. Let I be the set of all points in © such that V(q,4) = 0. Let M
be the largest invariant set in I'.' LaSalle ‘s theorem ensures that every
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solution starting in 2 approaches M as ¢t — oo. Let us now compute
the largest invariant set M in I

In the set I" (see (9.31)), V = 0 and thus

6 = 0 (9.36)
t+1sin(@+¢)0+¢) = 0 (9.37)
y—lcos(0+¢)0+4) = 0 (9.38)

6 = 0 implies that 6 is constant. Subtracting equation (9.11) from
equation (9.10) yields

I6—k¢=T (9.39)

Since § = 0, then 6 = 0 and using (9.39), we have T = —kd. Moreover,
since T' has been chosen such that T = é[—ka@ — 6] (see (9.27)) and
since 6= 0, then kg8 = kgk¢. Therefore, ¢ is constant. So, qb =0 and
¢ =0.

From (9.37), (9.38), § = 0 and ¢ = 0, it then follows that & = 0 and
y = 0. Therefore, z, y, 6 and ¢ are constants.

In view of (9.8), F1 = 0 and in view of (9.9), F» = 0. From (9.11),
it follows that ¢ = 0. Using ky@ = kgkd, it follows that § = 0. Then,
from (9.28), (9.29), (9.37) and (9.38), we conclude that z =0 and y = 0
also.

Finally, the largest invariant set M is given by the origin (0,0, 0, 0).
All the solutions of the closed-loop system converge to the origin. This
ends the proof of Theorem 9.1.

9.5 Simulation results

In order to observe the performance of the proposed control law based
on passivity, we performed simulations on MATLAB, using SIMULINK.

We considered the system taking the parameters as follows: M = 2,
m=1,1=3,I=1and k = 1. Figures 9.3 and 9.4 show the results for
kg =1,k; =1, k, =1, kg =1 and for an initial position

rT=25 y=1 =1 $p=0

i=0, y=0 6=0 ¢$=0
Simulations showed that our control law brings the state of the sys-
tem to the origin. The control inputs go to zero and the Lyapunov
function V is always decreasing and converges to zero.
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X
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Figure 9.3: States of the system
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Figure 9.4: Control inputs and Lyapunov function V
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9.6 Conclusions

The control strategy presented in this chapter brings the state of the
planar PPR manipulator to the origin. The control strategy is based on
an energy approach and the passivity properties of the system. A Lya-
punov function is obtained using the total energy of the system. The
analysis is carried out using LaSalle’s invariance theorem. In contrast to
the works of [8] and [88] in which they consider the control of the system
without excitation of its elastic mode, we have proposed a stabilizing
control law using the elastic energy. Indeed, our main interest was to
extend the previous works [18, 21, 24, 59] to this underactuated manip-
ulator, which possesses four degrees of freedom and three control inputs.
We can notice that the passivity properties are essential in establishing
the control law. In the above previous works, the systems were con-
trolled with only one control input. This particular system proves that
our approach can be extended to some underactuated systems having
several control inputs.



Chapter 10

The ball and beam acting
on the ball

10.1 Introduction

Another interesting example of underactuated systems is the ball and
beam system. In this chapter*, we propose a control law for the ball and
beam system acting on the ball instead of the beam. Such a mechanical
system is outlined in Figure 10.1 and described in Section 10.2. The
system in Figure 10.1 is motivated by the control of small rotational
oscillations of platforms and vehicle suspensions. For simplicity, we
assume that the center of the beam is connected to the pivot using a
rotational spring and we neglect friction.

We follow the Lagrangian approach to obtain the dynamical model
of the system and present some important mechanical properties such
as passivity (see [117] and [46]). We propose a feedback control scheme,
which allows us to asymptotically stabilize the system from any initial
condition close enough to the equilibrium point.

In Section 10.2, we describe the kinematics of the ball and beam sys-
tem when a force is acting on the ball. We obtain the dynamical model
using an Euler-Lagrange formulation and show the passivity properties
of the system. In Section 10.3, we derive the input control law and prove
the stability of the closed-loop system. In Section 10.4, we present some

*The authors of this chapter are Carlos Aguilar and Rogelio Lozano. Carlos
Aguilar is with the Laboratory of Measurement and Control, CIC, IPN, Col. San
Pedro Zacatenco, AP. 75476, 07700 Mexico D.F. and Rogelio Lozano is with the
Laboratory Heudiasyc, UTC UMR CNRS 6599, Centre de Recherche de Royallieu,
BP 20529, 60205 Compiegne Cedex, France.
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numerical simulations. Section 10.5 is devoted to conclusions and some
suggestions for future research.

10.2 Dynamical model

Let us consider the dynamical system described in Figure 10.1. We
are dealing basically with the ball and beam system but the control
input is now the force acting on the ball. A rotational spring has been
added, which is represented in the figure as two springs to remind the
reader about the original motivation of the system, which is a vehicle’s
suspension scheme.

Figure 10.1: The ball and beam system

To describe the motion, we choose the origin of the reference system
at point P and set the z axis along the horizontal direction and the y
axis along the vertical direction. As a set of generalized coordinates,
we use ¢o as the angle between the beam and the r axis, and ¢; as
the displacement of the ball from the origin P and measured along the
beam.

The position vector of the center of mass of the ball and its velocity
are

Ry = aqi(cosgz,sing) (10.1)
Vu = (—q1g2 singa + g1 cos g2, 142 cos g2 + g1 singz) (10.2)

Let u be the mass of the ball, I, the moment of inertia of the ball
around its center of mass and Ig = %ml2 the moment of inertia of the
beam. Using equation (10.2), the total kinetic energy of the system is
given by

1.1, .
K(q,9) = =Irds + -n (4} + ¢3d3) (10.3)
2 2
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where I = Ig + I,,. The potential energy of the ball is
Vu(q) = pgqising:

and the potential energy of the deformed springs is
Vs(q) = ki*sin® gy

where k is the elastic constant of the springs. Therefore, the total
potential energy is given by

V(q) = Vs(q) + Vi(q) = ki*sin® g3 + pgqi singo (10.4)

Equations (10.3) and (10.4) allow us to write down the Lagrangian
function

L(q,9) = K(g,9) — V(q) (10.5)

where ¢7 = [ g2].
Following the Euler-Lagrange procedure, we get two second order dif-
ferential equations as follows

d (0L oL . .2 .

7 (55) T kg1 — pq192 + g Sings (10.6)
d (8L\ oL \ . .
=)= = I 2

7y ( 8(1.) 0 (nay + IT)d2 + 21014142

+2k1? cos ga singa + pgqy cosga  (10.7)
In the general case, these equations can be written as
M(q)i+ C(q,d)g + G(q) + Fs(q) = (10.8)

where M(q) is the inertia matrix

M(q) = [ " ﬂq%i . ] (10.9)

C(q, q) is the Coriolis matrix

. 0 —pqige ]
C(q,q9) = ) . 10.10
(g 2 [ Hq192  pq1q1 ( )

G(q) and Fs(q) are given by

_ | Hmgsing _ 0
Glg) = [ 1Lgq1 COS o ] Eilg) = [ 2kl? cos g singo ] (10.11)
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Note that G(g) and F,(q) are due to gravity and to the spring respec-
tively.
The generalized force is given by

= [ f } (10.12)

w

where f is the force acting on the ball along the beam and w is an
external perturbation.

It can be easily seen that equations (10.8) to (10.12) define an un-
deractuated system, because the system has only one input f and two
degrees of freedom ¢; and go.

It is worth mentioning that if the control input is zero, i.e. f =0,
the disturbance w can render the system unstable.

10.2.1 Mechanical properties

The mechanical system (10.8) has several fundamental properties, which
can be used to facilitate the design of a control system.

e P.1: M(q) is a positive definite matrix.

e P2: N = M(q) — 2C(q, ) is a skew-symmetric matrix

N = 0 2p9192 (10.13)

| “2wqg2 O
Therefore

¢"Ng=0 V gq¢€ R? (10.14)

e P.3: Vectors G(q) and Fs(q) satisfy the following relation (see
(10.4))

T — G(a) + £

Remark 10.1 Properties P.1 and P.3 allow us to propose a Lyapunov
function that is related to the total energy. Property P.2 is a statement
about the Coriolis forces, which will be useful when proving negativeness
of the derivative of the Lyapunov function. |
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10.3 The control law

Property P.2 suggests the use of the total energy to design an input con-
trol law, which stabilizes the system at the equilibrium point (g7, ¢7) =
(0,0,0,0), starting from any initial condition (g10, ¢20, 410, g20)- To solve
this problem, we propose a simple passive feedback scheme, which cor-
responds to a PD controller defined by

f=—kpq1 — kan (10.15)

where k, > 0 and kg > 0.

10.3.1 Stability analysis

We obtain the closed-loop equations by introducing the PD control
(10.15) into (10.8) for the case when w =0

(kdq.l + kp‘]l)

G = —gsings +qids — p (10.16)
—2uq1G142 — 2kI? ingy —
Go = 14q149142 C(;S g2smgqz — [(£gqy COS g2 (10.17)
ngy + I

Before stating the main result of this paper, we present a useful propo-
sition.

Proposition 10.1 Let us consider the following auziliary function

Ve(q) =V(g) + k—”zﬁ (10.18)

where V(q) is given in (10.4). If ky > %’i’;—, then Vp(q) is positive
definite for all g € IR?. [ |
Proof 10.1 Note that

) ) k,q?
Vp(q) = ki?sin® g3 + pgqr sings + qul

By applying the following inequality: —ab < %7 + % Va,be R, v>0
into the above equation, we then have

2
Vp(g) = (kl* — 252)sin® g2 + % (kp — &) (10.19)
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It follows that Vp(q) will be positive definite if v < % and if k, is

chosen such that k, > ’%;‘Z Therefore, Vy(q) tis positive definite if

|
Define the following Lyapunov function candidate
. 1, .
Vr(g,4) = 54" M(a)q + Vr(q) (10.21)

where Vp is given in (10.18). If k, verifies (10.20), then Vp(q,q) is
positive definite.
The time derivative of Vr is

Vr = M(q)G+ 5 : TdM(q)q + qT BV(Q) + kpq1qn

From (10.8) and properties P.1 to P.3, we get

Vi = ¢"(-C(q,d)q — G(q) — Fi(q) + 1)
l-TdM(‘I) ., .79V(q)

28 —a 179 5, + k1
= af +kqa (10.22)
Introducing f in (10.15) gives
Vr = —kqg? (10.23)

Now we proceed to apply LaSalle’s theorem. Since Vr(g,q) is positive
definite in IR*, while Vi(g,q) is only negative semi-definite, stability
in the sense of Lyapunov is guaranteed, i.e. ¢ and ¢ are bounded.
The asymptotic stability of the equilibrium point (¢ = 0,¢g2 = 0,4, =
0,42 = 0) follows from LaSalle’s invariance theorem. Define the set (see

[46]))
$ ={Vr(q,4) = 0} = {ér =0} (10.24)

and consider any trajectory (g,q) inside S, which is an invariant set,
since ¢; = 0 then ¢g; = ¢ where @; is a constant. From (10.16), it follows
that

0= —pugsings + ucilq% — kpq1 (10.25)
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Differentiating the above expression, we get
0 = ga(—pg cos g2 + 2141 42) (10.26)

We then have two possible cases:

e Case a: ¢o =0.

From (10.25), it follows that g2 is constant, i.e. g2 = g2 and such
that

k.
singz + —2q1 =0
©g
From (10.17), it follows that

cos g2(sin g2 + 2k12ql) =0

Combining the two above equations, we have
2,2

2kl?

In view of (10.20), we either have g1 =0 or cosgz = 0. If g1 = 0,
then from (10.25) g2 = 0. In order to avoid having g2 = +7 as pos-
sible convergence points, it is sufficient that the initial conditions
belong to a neighbourhood of the origin such that (see (10.19))

cos @2(5r05 — kp)g1 =0

V(0) < ki — %Q (10.27)

for some v > 0 such that the right hand side of the above is
positive and k, > /é;‘l
e Case b: ¢2 # 0, then
g2 = 21_ Cos g2
Combining the above with (10.17), we get

COS q2 <§%(wﬁ + I7) + 2kl®singy + ugdl) =0 (10.28)

The case cosqz = 0 has been avoided by imposing (10.27). It
turns out that go = g is constant. From (10.25), it follows that

(10.29)
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From (10.28) and (10.29), we get

2k (p*g® 2 12g°
—_ 0 — k = 10.
(@ D dl g -m) =0 (1030)
If k, satisfies the inequality
1
Wy 31 (10.31)

2 kI ”—4k12

then (10.30) leads to a contradiction ruling out the possibility of
having case b).

For simplicity, let us choose v = g% . Inequality (10.27) becomes
k12
V(0) < - (10.32)

From (10.19) k, has to satisfy k, > £2, which becomes

pg 5 pig?
ky > Y T8 k2 (10.33)
Therefore we can choose
3 /1‘292
kp = YRR (10.34)

which satisfies (10.31) and (10.33).
We can summarize our results in the following lemma.

Lemma 10.1 Let us consider the ball and beam system as described by
(10.8) in closed-loop with the controller (10.15) with k, as in (10.34).
Then, the origin of the system is locally asymptotically stable and the
domain of attraction is the region defined by (10.32) where the Lyapunov
function is given in (10.21). [ |

10.4 Simulation results

In order to observe the performance of the feedback control law proposed
in equation (10.15), we performed some simulations using SIMNON. We
considered:

p=1, Ip=10, I=1, k,=5, kq=3.
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Figures 10.2, 10.3 and 10.4 show the behavior of q;, g2 and the control
action f, respectively, starting from g;(0) = 0.6, ¢2(0) = 0.15, ¢;(0) =
—0.1 and ¢2(0) = 0.1. As we can see, this system exhibits good behavior.
The stabilization occurs around 50 seconds with a control effort that
has an upper bound of |f| < 2N .

o7, Y4

S

—

Time [sec]

-0.2

Figure 10.2: Displacement ¢;

In order to evaluate the robustness of the closed-loop performance
against an external disturbance w, we applied a disturbance w (see
(10.12 )) of amplitude of 1N, during 0.5 seconds, once the system had
reached the equilibrium point. A plot of the corresponding response
is shown in Figures 10.5, 10.6 and 10.7. We note that the amplitudes
of ¢q1,q2 and the control action f are smaller than those shown in the
previous figures.

10.5 Conclusions

In this chapter, we have presented a control strategy for the ball and
beam system by acting on the ball, which exploits the natural passivity
properties of this class of underactuated systems. The objective of the
control law was to bring the state to zero, from any initial condition
(g10, 420, 10, g20) close enough to the equilibrium point. We considered
the movement of the system subject to small vibrations around the
equilibrium point.

The stability of the closed-loop system was shown using the second
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Figure 10.7: Input f

Lyapunov method. We proposed a Lyapunov function Vr based on
the total energy of the system. We used the mechanical properties
of Euler-Lagrange systems. The convergence analysis was made using
LaSalle’s theorem, from which we guarantee that the closed-loop system
is asymptotically stable.




Chapter 11

The hovercraft model

11.1 Introduction

Nowadays, control problems of underactuated vehicles motivate the de-
velopment of new non-linear control design methodologies. Such sys-
tems are vehicles with fewer independent control inputs than degrees of
freedom to be controlled.

In order to capture the essential non-linear behavior of an underactu-
ated ship, we have simplified its model as found in [25]. Neglecting the
damping, we have considered that the shape of the ship is symmetric
with respect to three axes, mainly a circle and that the two propellers
are situated at the center of mass. Therefore, after these simplifications,
we obtain the model of a hovercraft that has two propellers to move the
vehicle forwards (and backwards) and to make it turn. The main dif-
ference with respect to a two-wheel mobile robot is that a hovercraft
can move freely sideways, even though this degree of freedom is not
actuated. The hovercraft model presented here will be used to design a
control strategy and the purpose is to promote the development of new
control design methods, such as the studies of other highly non-linear
mechanical systems like the ball and beam and the inverted pendulum
have done.

A picture of a model kit representing a real hovercraft (the “LCAC-
1 Navy Assault Hovercraft”) is shown in Figure 11.1. The Landing
Craft Air Cushion (LCAC-1) is an assault vehicle designed to transport
U.S. Marine fighting forces from naval ships off-shore to inland combat
positions. The model kit is a reproduction of the 200 ton craft.

We will first consider the problem of regulating the surge, the sway
and the angular velocities to zero. We will also propose strategies for

155
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Figure 11.1: LCAC-1 Navy Assault Hovercraft

positioning the hovercraft at the origin.

Various control algorithms for controlling underactuated vessels have
appeared in the literature. Leonard [51] was the first to control a dy-
namic autonomous underwater vessel model (AUV model) with force
and torque control inputs. It was shown how open-loop periodic time-
varying control can be used to control underwater vehicles. Pettersen
and Egeland [82] developed a stability result involving continuous time-
varying feedback laws that exponentially stabilize both the position
and orientation of a surface vessel having only two control inputs.
This result was extended to include integral action in [83]. Other
approaches also exist in the literature like the one in Fossen et al.
[26], which considered a non-linear ship model including the hydro-
dynamic effects due to time-varying speed and wave frequency. This
involved a non-symmetrical inertia matrix and non-positive damping
at high-speed. The authors used a backstepping technique for track-
ing control design. Bullo and Leonard [15] developed high-level motion
procedures that solved point-to-point reconfiguration, local exponential
stabilization and static interpolation problems for underactuated vehi-
cles. Strand et al. [112] proposed a stabilizing controller for moored
and free-floating (but not underactuated) ships constructed by back-
stepping. They proposed a locally asymptotically convergent algorithm
based. on Ho-optimal control. They also presented a global result using
inverse optimality for the non-linear system. Pettersen and Nijmeijer
[85] proposed a time-varying feedback control law that provides global
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practical stabilization and tracking, using a combined integrator back-
stepping and averaging approach. In [84], they proposed a tracking con-
trol law that steers both position and course angle of the surface vessel,
providing semi-global exponential stabilization of the desired trajectory.
Berge et al. [9] developed a tracking controller for the underactuated
ship using partial feedback linearization. The control law makes the po-
sition and velocities converge exponentially to the reference trajectory,
while the course angle of the ship is not controlled.

One of the difficulties encountered in the stabilization of underactu-
ated vehicles is that classical non-linear techniques in non-linear control
theory like feedback linearization are not applicable. Therefore, new de-
sign methodologies should be explored.

In the present chapter, we propose two different control strategies.
The first controller globally and asymptotically stabilize the surge, sway
and angular velocities with a differentiable controller. In this case, we
consider the surge force and the angular torque as inputs. In the second
controller, we globally and asymptotically stabilizes the position and the
sway velocities at the origin using the surge and the angular velocities
as inputs. The proposed controller is discontinuous. In both cases,
the analysis is based on a Lyapunov approach. This chapter refers to
the work [22]. The chapter is organized as follows. In Section 11.2, the
model of the simplified ship is recalled. Section 11.3 presents the control
algorithm to stop the hovercraft. Section 11.4 is devoted to the control
strategy for positioning of the hovercraft. Section 11.5 gives simulation
results.

11.2 The hovercraft model

In this section, the mathematical model of the hovercraft system as
shown in Figure 11.2 is obtained using both Newton’s second law and
the Euler-Lagrange formulation.

11.2.1 System model using Newton’s second law

We consider the class of underactuated vehicles described by the fol-
lowing general model (see [25])

Mv+ Cw)v +DW)v +g(n) = [T] (11.1)

n = Jmy (11.2)
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Figure 11.2: The hovercraft

where n € R", v € R", 7 € IR™, m < n. The matrices M and J are
non-singular and M = 0. This class of systems includes underactuated
surface vessels, underwater vehicles, aeroplanes and spacecraft. The
vector v denotes the linear and angular velocities decomposed in the
body-fixed frame, n denotes the position and orientation decomposed
in the earth-fixed frame, and 7 denotes the control forces and torques
decomposed in the body-fixed frame. M is the inertia matrix. C(v)
is the Coriolis and centripetal matrix. D(v) is the damping matrix
and g(n) is the vector of gravitational and possibly buoyant forces and
torques. Equations (11.1) and (11.2) represent the dynamics and the
kinematics respectively.

Using the previous model (11.1)-(11.2), a surface vessel having two
independent main propellers is described by the following model (see

[81))

my; 0 0 U 0 0 ~f(v,7) u
0 Moy Ma3 v + 0 0 muu v
0 mo3 M33 T f(v,r) miiu 0 T
-X, 0 0 u [ 7w
+10 -Y., -Y; v |=1|(0 (11.3)
0 -N, -—N, r | 7
T cos(¢p) —sin(¥) 07 [ w
y | = | sin(y) cos(¢) O v [(11.4)
) 0 0 1L ||

where f(v,7) = masr + mav. |The matrices are denoted M, C(v),
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D and J(n) according to (11.1)-(11.2). M and D are both constant,
positive definite matrices. The vector v = [u,v,r]” denotes the linear
velocities in surge, sway and the angular velocity in yaw respectively.
n = [z,y,¥]T is the position and orientation vector and 7 = [7w, 0, 7T
denotes the control forces in surge and the control torque in yaw re-
spectively.

The non-linear model for an underactuated hovercraft is obtained
by simplifying the surface vessel model presented above (see [85] and
[84]). We have neglected damping, considered that the shape of the
hovercraft is a disc and that the propellers are located at the center
of mass as shown in Figure 11.2. In order to obtain a simple model
capturing the essential non-linearities of a hovercraft, we assumed the
inertia matrix in (11.3) to be diagonal and equal to the identity matrix.
Moreover, we cancelled the hydrodynamic damping, which is not essen-
tial in controlling the system. The dynamic equations are then given
by (see [82])

u = vr+Ty
—ur (11.5)

T o= T

where 7, is the control force in surge and 7, is the control torque in
yaw. In the second equation of system (11.5), the right term represents
Coriolis and centripetal forces.

11.2.2 Euler-Lagrange’s equations

Using the same assumptions as the previous section, the Lagrangian
function for the system described in Figure 11.2 is given by

1 1 1.
L=+ =¢* + =9? 11.
& T 5U 21/) (11.6)
The corresponding equations of motion are derived using Lagrange’s
equations

2 (Soa@n)- 5 i = (1.7



160 CHAPTER 11. THE HOVERCRAFT MODEL

where ¢ = [z, y, ¥]T and 7 = [r,cos(¢), 7 sin(¥), 7+]7. From La-
grange’s equations (11.7), we therefore have

= 7,cos(y)
Yy = T7yusin(y)
'2) = Tr

Let us recall the kinematics (11.4) as follows

z = cos(y)u —sin(y)v

y = sin(¢)u + cos(yp)v (11.8)
b = r
Differentiating the above equations (11.8), we obtain
& = —sin(y)ru+ cos(¢)u — cos(¢)rv —sin(y)o  (11.9)
§ = cos(y)ru + sin(y)d — sin(y)rv + cos(¢)v (11.10)
"Z = Tr

Multiplying (11.9) by cos(¢) and (11.10) by sin(¢)) and adding these
two equations yields

= cos(¢)Z + sin(y)y + vr
= Ty+or (11.11)

Multiplying (11.9) by sin(¢)) and (11.10) by cos(¢)) and adding these
two equations yields

v = cos(¢)y — sin(y)E — ur
v = —ur (11.12)

We finally obtain the dynamic equations (11.5)

U = Ty+or
= —ur (11.13)

o= T

ol Lel ZTJ@ i

he problem of controlling the po-
1s disregard the latter equation in
olynomial kinematic equations and
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to eliminate 1), we use the following coordinate transformation as in
[82], which is a global diffeomorphism

z1 = cos(¢)z + sin(¢¥)y

zg = -—sin(y)z + cos(y)y (11.14)
z3 = ¢
Differentiating z; and 23 and using (11.8), we obtain
Z'I = u-+ 297
Z2 = v—2AT (11.15)

The resulting model, including the kinematics and the dynamics, is
finally given by

U = ur+Ty
= —ur
o= T (11.16)
Z1 = u+ 297
2y = vV —2T

11.2.3 Controllability of the linearized system

Since the third equation (7 = 7,.) in (11.16) is directly controllable, let
us consider the linearization of the four other equations.
The system can be rewritten as follows

U 0o 0 O U 1
Z| a1 00 of|n|t|o|mmaxrEn
29 0 1 —» 0 29 0
We then have
1 0 —r? 0
o | A= e
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Therefore, the linearized system is controllable if r # 0. A very simple
control strategy can be obtained by fixing r to a constant different
from zero and computing a linear controller for the input 7,. This
controller will exponentially stabilize (u,v, z1,22) to the origin but r
will not converge to zero.

Furthermore, if r is time-varying, we could use the Silverman’s cri-
terion to check the controllability of the system, i.e.

d d

rank C(t) = [b(t), (A(t) = Z)b(8), -, (@) = 2)"'b()| =4 (11.17)

In our case, det (C(t)) = 4r*. Therefore, if r is time-varying, the system
is controllable at all time if r(¢) # 0, V.

11.3 Stabilizing control law for the velocity

The dynamics of the system are given as follows

U = vr+ Ty
= —ur (11.18)
o= T
The objective is to stop the hovercraft, i.e. to control “the state vector
wv r]T” with the two inputs “r, and 7,.”. 7, and 7, are the surge control
g

force and the yaw control torque provided by the main propellers.
We propose the control law

T = —kyu (11.19)
T = —ur—ky(r—v) (11.20)
where k, and k, are strictly positive constants. Consider the candidate

Lyapunov function

1 1 1
Vi(u,v,r) = Euz + 51)2 + 5(7" —rg)? (11.21)

with 74 = v. The time derivative of V; is then

Vi =u(or ) = uvr + (r — v) (1, + ur)
= —ku? —k (r = v)°
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Using LaSalle’s invariance principle, we consider the set Q =
{(u,v,r) :Vi(u,v,7) = 0} = {(u,v,7) : u=0,7 =v}. From (11.19),
we see that 7, = 0 in Q and from (11.18) this implies r = v has to be
zero to stay in 2. Thus € contains no trajectory of (11.18) other than
the trivial trajectory, and the continuous control law in (11.19) and
(11.20% globally and asymptotically stabilizes the origin of the state
[uvr]”.

11.4 Stabilization of the position

11.4.1 First approach

In this section, we will develop a control law for positioning the hover-
craft using the surge and angular velocities v and r as virtual control
inputs. The model in (11.16) reduces to

2,:1 = u-+ 29T
Zo = v-—2z1T (11.22)
v = —ur

Note that the above system satisfies Brockett’s condition while it would
not if we have added the equation for the course angle: ¥ = r. Consider
the following candidate Lyapunov function

1 1 1
Vo = Ezf + izg + 51;2 (11.23)
Then
Va = z1u + 220 — wor = 21U + v(zg — ur)
We propose
ur = 2z9+7v
{ u = -—sign(z)¢ (11.24)

where sign(0) = 1 and ¢ is a positive definite function defined by

1

=B (11.25)
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The resulting control input r is

22+
r=——— 11.26
—sign(z1)¢ ( )

Obviously r is a discontinuous function. The time derivative of V5 is
given by

Vo = —|z1| ¢ — v? (11.27)

It follows that V2 is negative and so V, converges. Therefore, 21, z2 and
v remain bounded. Note that although r in (11.26) is a discontinuous
function, r is bounded on any compact set. Integrating (11.27), it fol-
lows that fot v2dt and fot |21| ¢ dt are finite. From (11.22) and (11.24), it
follows that © is bounded, which implies that v is uniformly continuous.
Using Barbalat’s lemma, it follows that v — 0. Then, since 22 = v — 27
is bounded, 23 is uniformly continuous. From (11.22) and (11.24), we
have v = —ur = —z3+v, then v is uniformly continuous. It follows that
v — 0, using Barbalat’s lemma. Using again v = —ur = —2z3 + v and
v — 0, it also follows that zo — 0. Since V5, converges, it follows that
z1 converges to a constant z;(co). We will study two different cases:

e Case a: If z1(00) = 0, the state (z1, 22, v) converges asymptotically
to the origin and the inputs © and r converge to zero.

e Case b: If 21(00) # 0 then there exists a finite time 7" such that
1
ol > Slailoo)l Ve T
Therefore

¥ |z1(c0)] [*
[1atga> BN [ o) a

Since the left hand side of the above is finite and ¢ is uniformly
continuous, it follows from Barbalat’s lemma that ¢ — 0.

Finally, we conclude that the state (21, z2,v) and the inputs u and r
converge asymptotically to zero.
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11.4.2 Second approach

In this section, we present an alternative control scheme for achieving
positioning of the hovercraft. The advantage of the control strategy
proposed here is that the control inputs are smoother than those of the
control proposed in the previous section. We will prove also that the
state (21, z2,v) and the control inputs u converge to zero. However, we
will only be able to prove that r remains bounded. The main idea is to
choose u and r such that (see (11.22))

V+Za=v—(ut+z1)rE —(v+2) (11.28)

We propose the candidate Lyapunov function

1 1
V3 = 5 (Z% + Z%) + Z (’U + 22)2 (1129)
Differentiating (11.29) and using (11.28), it follows that (see (11.22))
. 1 0
Vs = zlu+zzv—§(v+22)
v? 22

Considering the following control inputs u and r

v2 22
u=—-21+ Z‘ + Z (1131)
and
4v + 2
r= Aot 2z (11.32)
N
The time derivative of V3 becomes
1 22 v2 22
Vo= —22 - 29222 p 2
PTTATRY TtV Ty
and by completion of squares, we get
. 3 1 1
Vs < —sz - sz - Zzg (11.33)
Since V3 and —V; are both positive definite and since
1 1 1 1
'2-(2% +’02+Z§) < 52? + §'02 + ZZ% <V
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and

1 1
Va3 < 52%+z§+§v2 <22+ 22402
we have thus proved that the origin of the system (11.22) is globally and
exponentially stable. Moreover, u converges to zero and r is bounded
(Ir] < 6).

11.4.3 Third approach

We will now propose a last alternative control scheme for controlling
the position of the hovercraft. This latter approach is based on the
main idea (11.28) and on the candidate Lyapunov function V3 (11.29),
which we will call V4. The advantage of the control strategy presented
here is that the state (21, 22, v) converges exponentially to zero, whereas
the convergence is only asymptotic in Section 11.4.1. Moreover, both
control inputs u and r converge to zero.

Since v + 7z £ — (v + z2) persists, the time derivative of V; remains
(see (11.30))

. 1
Vi = zju+ 290 — §(v+zz)2
2 2
= 2u-— % - %2 (11.34)
We propose
u = —2z; — sign(z1)/|2v + 23| (11.35)
and

r = —sign(21(2v + 22))V/|2v + 23| (11.36)

The time derivative of V4 becomes

. 1 2
Vi= -2 — |z1|V/|20 + 29| — 51)2 - %2 (11.37)

By completion of squares (as in Section 11.4.2), it is easy to show that
this implies that the origin of the system (11.22) is globally and expo-
nentially stable. Furthermore, u and r converge to zero.
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11.5 Simulation results

In order to observe the results of the different proposed control laws,
we performed simulations.

Figure 11.3 shows the results for the stabilization of the system
(11.18), using the control law in (11.19) and (11.20), with k, = 1 and
k. = 1. The initial velocities are u(0) = 10, v(0) = 10 and r(0) = 1.
Figure 11.4 shows the simulations for the stabilization of the position of

Velocities: surge u (), sway v (:), yaw r (-.) Lyapunov function V1
10 T — B — 200
8k - ........ ........ ........ . . : .
150 ...... ........ ........ ........
8 el ........ ........ ........ ........ : : : 1
g . . . . > 1008 - ........ ........ ........
g 4 ......................................
soll . SRR
2 .................................... . . . .
S ONL : . : . .
0 P S 0
0 5 10 15 20 25 10 15 20 25

time time

Control inputs: Tauu (-)and Taur ()

Control

Figure 11.3: Control of the velocity using the algorithm in Section 11.3.

system (11.22) with the control law in (11.24)-(11.26). The initial po-
d v(0) = 0. Figure 11.5 shows the
11.32) for system (11.22), with ini-
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Positions: 21 (-), 22 () and v (-.)

Positions

02
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time

Control input: u

Control

time

Lyapunov function V2
0.01 T

0.008
0.006f - ........... ...........
0.004H - ........... .....

0.002
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time

Control input: r

Control
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Figure 11.4: Stabilization of the position using the algorithm in Section
11.4.1: controller (11.24)-(11.26)
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tial positions z;(0) = 10, z2(0) = 10 and v(0) = 1. We can choose larger
initial positions, because the control does not saturate since the con-
trol law is smoother than those using the sign-function. Finally, Figure

Positions: z1 (-), 22 (:) and v (-.) Lyapunov function V3
15 ; ; 140 -
120 ............. ............ .............
100 ............. .............
@ gl : 3
3 > | |
0(3 60 ............. .......... ...... B
: : : 40 e ,,,,,,,,, ,,,,,,,,,,
A 20 L .......................................
-10 - : 0 . ;
20 40 60 0 20 40 60
time time
Control input: u Control input: r
r T 5 : —
S f 5
: a :
o B R R R RTRERREE o
Al e
T ..........
-8 .
0 20 40 60
time

Figure 11.5: Stabilization of the position using the algorithm in Section
11.4.2: controller (11.31)-(11.32)

11.6 shows the results of the control law in (11.35)-(11.36) for system
(11.22), with initial positions z1(0) = 0.1, 22(0) = 0.1 and v(0) = 0.

11.6 Conclusions

We have presented a model of an underactuated hovercraft with three
degrees of freedom and two control inputs. We have proposed a control
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Positions: z1 (<), 22 (:)and v (-.) Lyapunov function V4

0.15 0.01
. X . 0.008}) -
2 0.006
9 -
= 005 > :
C 0.004f -\
0 ==
' 0.002
-0.05 : ' ' : 0
0 2 4 6 8 10
time time
Control input: u Control input: r
0.4 T - ; 0.3 T
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Figure 11.6: Control of the velocity using the algorithm in Section
11.4.3: (11.35)-(11.36)
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scheme based on a Lyapunov approach to stabilize the surge, sway and
angular velocities. We have also proposed three control strategies for
positioning the vehicle using the surge and the angular velocity as vir-
tual inputs. The three positioning controllers are discontinuous. One
of the controllers is such that the origin is globally and asymptotically
stable and the two inputs converge to zero. The second controller is
such that the origin is globally and exponentially stable and one of the
inputs (u) converges to zero while the other (r) is only proved to be
bounded. The third controller is such that the origin is globally and
exponentially stable and both inputs (u) and (r) converge to zero. The
proposed control presents an undesired chattering behavior. Further
studies are underway to better understand the control of the underac-
tuated hovercraft model presented in this chapter. Modifications are
still required to reduce the high frequency oscillations observed in sim-
ulations in order to render the controller applicable to a real system.



Chapter 12

The PVTOL aircraft

12.1 Introduction

Flight control is an essential control problem that appears in many ap-
plications such as spacecraft, aircraft and helicopters. The complete
dynamics of an aircraft, taking into account aeroelastic effects, flexibil-
ity of the wings, internal dynamics of the engine and the multitude of
changing variables, are quite complex and somewhat unmanageable for
the purposes of control. It is also particularly interesting to consider a
simplified aircraft, which has a minimum number of states and inputs
but retains the main features that must be considered when designing
control laws for a real aircraft. Therefore, as considered by Hauser et
al. [35], we focus our study on the planar vertical take-off and landing
(PVTOL) aircraft, which is a highly manoeuvrable jet aircraft.

A picture of a real vertical and short take-off and landing is shown
in Figure 12.1. This is the Bell X-22A V/STOL, the last aircraft to
be manufactured in Western New York. It can be seen at the Niagara
Aerospace Museum and it is on loan from the National Museum of
Naval Aviation.

Several methodologies for controlling such a system exist in the lit-
erature. Hauser et al. [35] in 1992 developed an approximate I-O lin-
earization procedure, which resulted in bounded tracking and asymp-
totic stability for the V/STOL aircraft. In 1996, Teel [115] illustrated
his central result of non-linear small gain theorem for the example of
the PVTOL aircraft with input corruption. His theorem provided a
formalism for analyzing the behavior of certain control systems with
saturation. He established a stabilization algorithm for non-linear sys-
tems in so-called feedforward form and illustrated his result with the
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Figure 12.1: The Bell X-22A V/STOL

example of the PVTOL aircraft.

In 1996 also, Martin et al. [67] proposed an extension of the result
proposed by Hauser [35]. Their idea was to find a flat output for the
system and to split the output tracking problem in two steps. Firstly,
they designed a state tracker based on exact linearization by using the
flat output and secondly, they designed a trajectory generator to feed
the state tracker. They thus controlled the tracking output through
the flat output. In contrast to the approximate linearization-based con-
trol method proposed by Hauser, their control scheme provided output
tracking of non-minimum phase flat systems. They also took into ac-
count in the design the coupling between the rolling moment and the
lateral acceleration of the aircraft (i.e. € # 0).

A paper on controlling a PVTOL aircraft appeared in 1999, where
Lin et al. [54] studied robust hovering control of the PVTOL in design-
ing a non-linear state feedback by optimal control approach.

In 2000, Reza Olfati-Saber [79] proposed a global configuration stab-
ilization for the VTOL aircraft with a strong input coupling using a
smooth static state feedback. This approach follows the ideas in [91].

The Lyapunov approach is an important stability analysis tool, since
it offers robustness properties. The control strategies for the PVTOL
proposed in the literature have not been based so far on the Lyapunov
approach. In [115], it was suggested that the method in [72] could be
used to obtain a controller for the PVTOL that is stable in the Lyapunov
1at this is indeed the case.

a synthesis of the significant ap-
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proaches that exist in the literature. We finally propose a smooth con-
trol Lyapunov function for the stabilization of the PVTOL aircraft. The
construction of the proposed Lyapunov function relies on a non-linear
stabilization technique called forwarding. The PVTOL aircraft model
represents a particular example that illustrates well the “Lyapunov for-
warding” technique. The control algorithm follows the idea developed
in [115]. Indeed, the control law is such that the objective is to sta-
bilize the altitude independently of the other variables. Then, the roll
angle is stabilized in such a way that it remains within a pre-specified
range. This avoids singularities in the altitude control part. Finally, the
controller takes care of the distance. This strategy is also interesting
because it allows satisfaction of the constraints on the altitude and the
roll angle imposed by a real application. It also allows initial conditions
to be handled at a distance that is far from the desired position, without
affecting the altitude and/or the roll angle of the aircraft. Note that
the proposed method has been presented in [20].

The chapter is organized as follows. In Section 12.2, the equations of
motion for the PVTOL are recalled. The input-output linearization of
the PVTOL aircraft system is presented in Section 12.3. A stabilization
algorithm based on the non-linear small gain theorem is presented in
Section 12.5. In Section 12.6, we develop our stabilizing control law
based on the forwarding technique for the PVTOL aircraft. Simulations
for the proposed control law are presented in Section 12.7. Conclusions
are finally given in Section 12.8.

12.2 The PVTOL aircraft model

The equations of motion for the PVTOL aircraft are given by (see [35])

&g = —sin(0)uy + ecos(f)us
= cos(f)u; + esin(f)uz — 1 (12.1)

é:UQ

where z, y denote the horizontal and the vertical position of the aircraft
center of mass and 6 is the roll angle that the aircraft makes with the
horizon. The control inputs u; and uy are the thrust (directed out of the
bottom of the aircraft) and the angular acceleration (rolling moment).
The parameter ¢ is a small coefficient that characterizes the coupling
between the rolling moment and the lateral acceleration of the aircraft.
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The coefficient “—1” is the normalized gravitational acceleration. The
following Figure 12.2 provides a representation of the system. In the

Figure 12.2: The PVTOL aircraft (front view)

present chapter, we will consider a simplified model of the PVTOL
aircraft system, i.e. with ¢ = 0. Indeed, we propose to control the
system as if there were no coupling between rolling moments and lateral
acceleration. Therefore, the equations of motion of the system (12.1)
become

Z = —sin(f)u
y = cos(Q)u; —1 (12.2)
é = U2

This choice is due to the fact that the coefficient ¢ is very small ¢ << 1
and not always well-known, even we expect to see a loss of performance
due to the unmodeled dynamics present in the system. Moreover, we
do not want to increase the complexity of the controller design and of
computations we will develop in this chapter.

12.3 Input-output linearization of the system

In this section, we briefly present the linearization algorithm proposed
by Hauser [35]. Since we are interested in controlling the aircraft po-
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sition, we choose £ and y as the outputs to be controlled. We seek a
state feedback law of the form u = a(z) + B(z)v such that

gk) = oy

yk2) = o (12.3)

for some integers k; and k3. z denotes the entire state of the system
and v is the new input. Differentiating the model system outputs, z
and y, we get (from equations (12.2))

£ | | —sinf 0 U1 0
Glelaw o lln]e[A] ee
The matrix multiplying the control inputs u; and wus is singular, which
implies that there is no static state feedback that will linearize (12.2).
Since uy comes into the system (12.2) through 6, we have to differentiate

(12.4) at least two more times. Let us consider u; and %, as states and
1y as our new input. Differentiating (12.4) twice again gives us

74 B —sinf — cos(0)u; (1
y@ - cos@® —sin(0)u; U
[ sin(6)0%u; — 2 cos(9)fu, ]

. : 2.
— COS(0)92u1 -2 Sln(0)0U1 (1 5)

The matrix multiplying our new inputs (ii;,u2)T has a determinant
equal to u; and therefore is invertible as long as the thrust u; is different
from zero. Note that this fact agrees well with the intuition, since no
amount of rolling will affect the motion of the PVTOL aircraft if there
is no thrust to effect an acceleration.

The following dynamic state feedback law can then be applied

Uy —sinf cosf
Uy = cos() smG
- 51n(9)02u1 +2 cos(0)0u1 + vy
cos(0)62u; + 2sin(6)04, vy
6%y —sinf cos@ v
= [ 29u1 cose _sinf ] [ Ul ] (12.6)
U1 2

which results in the linearlzed system

[zfi3J={5:}

We may choose (v;,v2) such that the outputs (z,y) will track a desired
trajectory and such that we guarantee that the system becomes stable.
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12.4 Second stabilization approach

We present in this section a backstepping approach related to the one
introduced by Sepulcre et al. in [91]. The idea is to use 0 as a virtual
input. Define

ri(z,z) = —kiZ —kez
r2(y,9) = —ksy—kay (12.8)
with some appropriate coefficients k;. We wish to have
z = ri(z,z) (12.9)
j = ry,9) (12.10)

If both conditions cosf # 0 and y; + 1 # 0 are satisfied, system (12.2)
can be rewritten as follows

7

t = - 11
ané F| (12.11)
up = —sin(0)z + cos(0)(y + 1) (12.12)
If we choose u; and 6 such that
7‘1(.’13, (I))
tan = ————"— 12.13
r2(y7y) +1 ( )
uy = -—sin(@)ri(z,z) + cos(0)(r2(y,y) + 1) (12.14)

with 7o(y,y) + 1 # 0, this will lead us to achieve (12.9) and (12.10).
Define the error

81 = tanf + r;j_ - (12.15)
and
T
r=o i - (12.16)
Differentiating (12.15), we get
& = (1+tan?0)0+7
& = (1+tan?6)(2tan06? + uy) + 7 (12.17)

We can define a controller uy, so the closed-loop system is given by

dp=r=kyd, — kod1 (12.18)

where 52 + k15 + kg is a stable polynomial. Therefore, §; — 0.
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12.5 Third stabilization algorithm

Teel proposed a very simple control algorithm for the PVTOL aircraft
[115]. He basically linearized the equation for the altitude y and then
used a linear controller with saturated input for the (z,6) subsystem.

AT
Defining & = [(.7: —xzq) T 0 0] , the control law is chosen to be of the

form

= g [ esin()ue — (v - va) — 24)

up = —0—20+ a1 (fLe + a2(fT€)) (12.19)

where 0,(s) = sign(s) min{|s|,a} and a < %, f1 and f; are constant

vectors. oy and oy are

s for —M; <s<M;

oi(s) = { sign(s)M; for |s| > M; (12.20)

The controller is shown to be robust to input corruption (uncertainty
in €) at least as long as (0,0,y — yq4,9) start off sufficiently small.

12.6 Forwarding control law

This section presents our control law based on the forwarding technique.
Let us consider the first order equations of the system (12.1), with
up=1+viande=0

.’ill = Iy
zyg = —sin(f) — sin(@)v,
o= \ (12.21)
g2 = cos(f) + cos(f)v; — 1
) = w
w = U9

where 1 = z, y; = y. Let us define 2z as the vector of state variables;
z = (z1,22,91,y2,0,w)’. Note that v; and uy are the new inputs.
The change of input u; to v; is useful for the Lyapunov function’s
construction. Moreover, it allows the free system (i.e. with no inputs)
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to have the origin as an equilibrium point. It means that when there
are no inputs, i.e. for v; = 0 and us = 0, the origin of the system
(z1, 2,91, Y2,0,w) = (0,0,0,0,0,0) is an equilibrium point.

Our control objective will be to stabilize the system around a desired
position (z1, Z2,¥1,¥2,6,w) = (0,0,¥14,0,0,0), where y;4 is the desired
altitude, different from zero. Note that this position is also an equilib-
rium point for the system (12.21). Let us consider §; = y; —y14 and Z the
new vector of state variables such that z = (zy, z, 91, ¥2,6,w)”. There-
fore, we wish to bring the system to (z1, z2, 91, y2,6,w) = (0,0,0,0,0,0).

In the present section, we will propose a Lyapunov function can-
didate for the system with € = 0. Note that this simplification only
eliminates complex terms in the Lyapunov function construction and in
the control law. The same construction could be done for the overall
system (i.e. with € # 0). However, to avoid increasing the complexity
of the controller design, we will consider € = 0. Note that this choice is
justified since this small coefficient is often not well-known. Moreover,
we will show that our control law performs well even when we include
the term due to this coefficient in the system equations.

Several steps are necessary for the construction technique, the estab-
lishment of the Lyapunov function candidate and the resulting control
law. In the next sections, we will develop these steps.

12.6.1 First step: a Lyapunov function for the altitude-
angle (y, 0)-subsystem

Our first objective is to stabilize the altitude of the aircraft around
a desired altitude y;4. Let us consider the (y,6)-subsystem, with the

control input ug = —0 — w + v2. The system (12.21) becomes
No= Y2
jo = cos(f)+ cos(f)v; — 1
v (6) + cos(6)en (12.22)
0 = w
w = —0-w + vg

Note that introducing the input v, leads to a stable subsystem (6,w)
for any bounded input signal vy. We propose the Lyapunov function
candidate

Vi(0,w) = 6%+ w?+ 0w (12.23)
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which is a positive definite and radially unbounded function.
The time derivative of V; along the trajectories of (12.22) is

Vi(0,w) = 20w + 2w(—0 — w + v2) + w? + (=0 — w + v2)
= —w?—0%-0w+ (2w +0)vy
1 1
= —5[92-1-0.12]—5[9+w]2+(2w+0)v2

1
~3 6% + w?] + (2w + O)v2 (12.24)
At this point, we impose that |vz| be smaller than % It follows that
there exists T such that, for all ¢ > T, |6(¢)| < §. This will be explained
in the following section.

12.6.2 Boundedness of 0(t)
The subsystem (6, w) of (12.22) is as follows
0 = w
(12.25)
w = —0 —w+ V2

Therefore, 6(t) satisfies
0(t) + 6(t) + 0(t) = vo (12.26)

which is a second order differential equation. The transfer function
derived from a standard form second order differential equation is

0(s) B kw,zl

Va(s) ~ (82 + 28wps + w2) (12.27)

where ¢ is the damping ratio and wy, is the natural frequency. Here,
£ = —% < 1 and w, = 1. This means that the poles of the system are a

complex conjugate pair (s = 1i‘/—’) Note that the poles have negative
real parts. The transient response is e~ 2 cos(‘ft) and is oscillatory
with frequency w = % The amplitude of the oscillations will decrease

and the response will decay with time e 2t, The system is stable.

We have imposed that ve be smaller than % 3 Looking at the standard
form step response of a second order system with § = 5 and w, =1,
we can determine the maximum of the overshoot described by 6(t). See
for_example [52] (pages 119-120) for additional justifications. So, by
applying a step input v = %, the response of the system 6(t) is stable
and therefore there exists 7' such that, for all ¢t > T, |0(t)| < -
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Remark 12.1 Note that the subsystem (0,w) is ezponentially stable,
given that |ve| < % It follows that |6(t)| < § for some finitet > T. In
the sequel, the results will hold fort > T. [ |

Let us define §; = y1 — y14 and the control input

v = ! [1 —cos(8) — g1 — y2) (12.28)

cos(0)
where cos(f) # 0 for t > T in view of the constraint [vs| < 1. We
assume that the system does not exhibit finite escape time during the
interval t € [0,T). The system (12.22) becomes

U1 Y2

’yz —Y1— Y2 (12.29)
0 w

w —0-w+ ()

Note that both subsystems (1,y2) and (6,w) are stable for |va| < %
Introducing (12.28) into (12.21), we obtain

( L1 = 2
Gy = —sin(0) + 21+ cos(9)] + [ + v
g =y (12.30)
Y2 = —Y1—Y2
) = w
w = —0-—w-+uv

\

12.6.3 Second step: forwarding design

We will now use v; in (12.30) to control the variable z;. Note that no
control input appears in the right hand side of the second equation in
(12.30). Therefore, we will control zs indirectly by introducing a new
variable £ = 2 —w — 0, which we will be able to control directly with vs.
This strategy follows the forwarding design technique. The key feature
of the forwarding design is to exploit the “upper-triangular” configura-
tion of the system to develop a “bottom-up” recursive procedure. See
[72] for more details.
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The time derivative of £ satisfies

£ = —vy+0 —sin(9) + :;I;EZ)) [-1+ cos(0)] + ::;((Z)) (71 + v2]
(12.31)
and
V1= & (12.32)
1

Since

o (12.33)
Ve

we have from (12.31) and (12.32)

/211 < -ﬁv2+l0—sin(0)|+|zzgg)|—1+cos(0)|

Coan
+%9—§l[|y1 + yo|

Recall that |0(t)| < 7, then |tan6(t)| < 1. Note that if we define g(6) =
+(1 — cos @) — 92—2, then ¢'(f) = £sinf — 6 and ¢”"(6) = £ cosf — 1 < 0.
Therefore, g(#) has a maximum at 8 = 0, which means that g(6) < 0,
ie.

(12.34)

| =14 cos(8)| < (12.35)

| R

Similarly, we obtain

2
10 — sin(9)] < % (12.36)

For 0 <6 < 7%, we have tanf > 0 and then tanf + /20 > 0 .
Moreover, looking at the graph of the function f(f) = tané for 6 >0,
we remark that f cuts across the straight line h() = /20 into 2
points: 8§ =0 and 6 ~ 0.91 . It turns out that the curve f is below
h for 0 < @ < 0.91 . Therefore, (tanf —+/26) <0 for 0 < 6 < 0.91
0 for 0 <0 <0.91. This implies
dso for |6] < 7§ .




184 CHAPTER 12. THE PVTOL AIRCRAFT

Using this last inequality, i.e. tan?6 < 262 , it follows that the last
term |tan(0)||§1 + y2| in (12.34) satisfies

| tan 0||71| + | tan 6]|yz|
%tan2 6+ 72 + $tan? 0 + y2
30° + 72 + 567 + y2
0° + 47 + v3

| tan(6)||g1 + y2|
(12.37)

A VAN VAN VAN

where we have used the inequality 2ab < a®?+b® Va,be€ R.
Finally, introducing inequalities (12.35)-(12.37) into (12.34) yields

3

E2+1< ————vy + 20+ 2 + 432 (12.38)
VE+1
We propose the following Lyapunov function candidate
Va = V& +1-1+46Vi(0,w) +3Vi(41,v2) (12.39)

with Vi(a,b) = a? + b + ab.
Note that from (12.29)

Vi(i,92) = 25192 + 2u2(—i1 — y2) + 93 + G1(~1 — v2)
= ~¥5 -9 -0y (12.40)
—3 [+ 93] - 5 + ]
Note also that V5 is a positive definite and radially unbounded function.
Differentiating (12.39) and using (12.24), (12.38) and (12.40), we obtain

Va < —W%ﬂwaﬁ+ﬁ+ﬁ

—3[60% + w?] + 6(2w + O)vy — 392 - 32 - 35 + y2)?

< —ﬁ§ﬁ+ﬁ@w+®]m—e?—&ﬂ—%ﬁ—§ﬁ

(12.41)
Note that

12wvy + 60vy < 12|w||vz| + 6]6]|ve]
13[wlfvz] + 716lva] — |w]lva] = 16|z
0
13| fvz] + 716 |vz| — AL o] - §¢E—ﬁlvz|
) w

Ilval = vz = g2

(12.42)
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Since
132, 77,
< — .
13|wl|ve| < 5w 72 + 5 V2 (12.43)
and
1, 7,
we have
1
710)|v2| + 13|w||va| < 4902 + 502 + 2w? (12.45)

Introducing (12.42) and (12.45) into (12.41), we then obtain (12.46)

. _ é‘ _ w _ '] 2
Vo < [ Ve+  Vite? \/1+02] vz + 49 (12.46)

192 2 1-2 1,2
—30% — W’ — 39 - 33

Let us define a new variable ¢

13 w 0

= + + 12.47
V=UEr  ire  iE® (1247)

We propose the control input v
vy = 1—/)- + w2 (12.48)

60

Note that the new input puy will be used to control the last coordinate
1.
Using the control input v, in (12.48), we have

2

2
2 _ 2
V2 = 3600 + Godmg + ps (12.49)

Using

v |1 49 1 9?2
2(6_0 T TH SEW‘F@M% (12.50)

(12.49) becomes

+ (1 4 49) u2 (12.51)
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and
2 § 2
< 50—— .
4903 < 505 + (49 x 50)y3 (12.52)
Therefore, introducing (12.48) and (12.52) into (12.46), we obtain
(12.53)
Vh < — 2 — gy + 250002 — 262 —w? — sg2 — L2 (1253
= 360 2 27 2

12.6.4 Third step: last change of coordinates

We propose the following change of coordinates, in order to include z;
in the final Lyapunov function

® = z; +60¢ (12.54)
Using € = z3 — w — 6, (12.31) and (12.48), the time derivative of ® is
such that
® = T2 + 606.

— 1 w [
= §+w+0+60(~@[\/€§2+1+\/1+w2+\/1+92]—u2
+0 — sin(6) + SN[~ 1 + cos(0)] + S (71 + 2]
[/

__ £ __w _
S m YT e T e
+60 [—#2 + 60 — sin(0) + %ﬁ%[—l + cos(0)] + :—10—2%%[171 + yz]]

= 60+ o+ O
2T feriree 1 | VItwRtwiHl | V126741

+60 [0 — sin(0) + :g; g)) [—1 + cos(0)] + %’sj(%[gl + y2]}

(12.55)

?iffere)r;tiating V®2 + 1 and using \/%_ﬁ < 1, we obtain (see also
12.32

VEFT < —60mpn + ol 4 il
3

24146241 Vitw4w?+l
[4
I
ol L zyl_ll>|

60{0 — sin(6)| (12.56)
0s(60)] + 60122 51 + po]
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Since
S zm
+
then
l¢[® e
VErri4ez 41 £+1 ,
¢ ¢
< g Ee (12.58)
< g
< em

Using the above and the same procedure used to obtain (12.38), it
follows that

VI 1 $ €1 |w|?® 61
41 < 6075 \/52+1 t Vo T U
+120 62 + 60[32 + y2]
< —60 + LB 4242
- V“I”+ H T Ve (12.59)
+120 62 + 60[7? + y2]
< —60 J£|.2_

\/afr"z Ve
+121[6% + w?] + 60[7? + y2)

Consider the Lyapunov function candidate

Vi = VOZ4+1-1+k(1+V2)?—k (12.60)
where k is a strictly positive parameter to be defined later. Then, using
(12.59) and (12.53), the time derivative of V3 satisfies

Vs = VO F1+2k1+V)Vs

1€1? 2, .2 ~2 2
< 60\/@“#2 + Jon + 121[6° + w?] + 60[g7 + y3] (1261)

—2k(1 4+ Vo) 5559% — 2k(1 + Va)ppa
+2k(1 + V) [-16% — w? — 142 — Ly2 + 25003]

Since V1(0,w) and Vi(91,y2) are both positive, it follows from (12.39)
that

6V1(0,w) — 3V1(91,y2) (12.62)
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Then, V3 in (12.61) becomes

Vo < [-6058= — 2k(1+ Va)y] o

2
el + 121002 + w?) + 60[3F + 3]
/ 2 13 w 9
~mV1+¢E [\/EZH T A T e

+2k(1 + V3) [-36% — w? — 142 — 1y2 + 250043

]2 (12.63)

Since
a . i 2 a i 2 \
—+V4b| +|—=+Vic| +(b+c)" >0 12.64
(Fa+vie) + (g +vie) +o+or> (12:64
it follows that
(a+b+c)?> %a2 — 4b% — 4c? (12.65)
and the next inequality (12.66) is satisfied
1 &2 w? 62
2
> - -_— — .
vt 2 262 +1 1+ w? 41+02 (12.66)

On the other hand, using (12.62)

a5 V1 + &2 [w? + 67]
k(1 + Va) [w? + 67] (12.67)
k(1 + V3) [w? + £67]

02
i V1+¢ [1+m2 + 1+07]

IAN A

Therefore, V3 becomes
Vs < [-60g8— —2k(1+ Vz)d’] pa + —‘/lﬂ_—z— +121[6% + w?]

+60[77 + 53] — 360Vl+£2§2§ﬁ+k (1+ Vo) [-126% — w2

—§? — y% + 500013
(12.68)

Choosing k£ = 363, we obtain

Vs < |—60—=2—= — 726(1 + V)| pa + Ji'—— +121[62 + w?
ve VE+

+60(77 + yz] - 308 —f? +363(1 + V3) [—ﬁ02 — w2

(12.69)
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and finally, since V2 > 0 and defining

®

T 726(1 + Vo) (12.70)

x = —60
we get

Vs < xpz+ 1.9 x 105(1+ V5)ud
2 ~
—ﬁ—&z + (1 + Va) [-209 62 — 242 w? — 303 77 — 303 3]
(12.71)

We propose the following control input uz, where A is a strictly positive
parameter

p2 = —AX (12.72)
Introducing pz (12.72) in (12.71) and choosing (1—1.9x 105(1+V3)A) >
1 -
bh 1.€.

1

A< 12.7
~2x1.9x108(1 + Vs) (12.73)

we then have

Vs < _AX2___1_._§2__
Ve (12.74)

+(1 + V3) [—209 6% — 242 w? — 303 % — 303 y3]

This implies that Vg(%) < 0, Vz # 0. Therefore, V3 is negative definite.
In Section 12.6.1, we have imposed |v2| to be smaller than 3. With
(12.48), it turns out that we have to impose that |u2| < 5. Therefore,
we will introduce in py (12.72) a saturation function to ensure that

lua| < 55. The saturation function for u; is as follows
po = —sat(Ax) (12.75)

in order to have |pa| < %.

Note that introducing a saturation function is equivalent to choosing
a X satisfying (12.73) and 2 in (12.72) satisfying |u2| < %. For k = 363,
12.60) becomes

363(1 + V3)* — 363 (12.76)
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with

E = zo—w-—1~0
= z +60¢
Va = VE+1-1+6W(0,w)+3Vi(i1,12)
Vi(a,b) = a?+b*>+ab

(12.77)

Note that V3 is positive definite and radially unbounded. Since V3 and

—V; are both positive definite and radially unbounded, we have thus

proved that the origin of the overall system z = (z1,zs2,71,¥y2,6,w)

with control inputs as in (12.28), (12.48), (12.75) and (12.70) is asymp-

totically stable. Note that since the closed-loop system has a stable

linearization, this implies local exponential stability of the system.
The main result is stated in the following theorem.

Theorem 12.1 Consider the system (12.21) with uy = 1+ v;,. Taking
the Lyapunov function candidate V3 defined in (12.76) and (12.77) for
t > T (see Remark 12.1), then the origin of the closed-loop system with
the control law (12.28), (12.48) and (12.75) is asymptotically stable. B

12.7 Simulation results

In order to validate the results of the proposed control law based on the
forwarding technique (see Section 12.6), we performed simulations. We
started the PVTOL at the position (z,y) = (200, 10) with 8 = 0.5 and
asked the controller to move the PVTOL to the position (z,y) = (0, 5)
with & = 0. The simulation results are shown in Figures 12.3, 12.4
and 12.5. For the simulations, we chose A = %1?6‘ Note also that z;
converges slowly to 0 (see Figure 12.3). This is due to the remaining
small degree of freedom on puy. Moreover, we ran simulations with the
same control including in the system the terms € = 0.1 and € = 1 (see
(12.1)). The results are very similar as for € = 0.

12.8 Conclusions

We have presented a control strategy for the PVTOL aircraft that sta-
bilizes the state to.the origin.. We have constructed a Lyapunov function
using the forwarding technique, in order to illustrate this technique with
a well-known example and then construct a Lyapunov function for the
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Figure 12.3: States of the system
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PVTOL aircraft model. Good performance of the proposed control law
has been tested in simulations. Compared to other controllers, the ad-
vantage lies in the fact that the control law is robust to uncertainty
in € (see Section 12.7). This was not the case with the approach pro-
posed by Hauser [35]. On the other hand, the same advantage has been
shown with respect to the appproach proposed by Teel [115], since our
strategy is inspired by his control scheme. The controller proposed by
Teel is robust to input corruption (uncertainty in €) at least as long as
(8,0, y—ya,y) start off sufficiently small. The control strategy proposed
here allows us in addition to start from an initial altitude y different
from the desired altitude yg.




Chapter 13

Helicopter on a platform

13.1 Introduction

In this chapter®, we present a Lagrangian model of a VARIO scale model
helicopter and a passivity-based control strategy. Our global interest is
a general model (7-DOF) to be used on the autonomous forward flight
of helicopters. We present the basic idea of the 7-DOF modelling. How-
ever, in this chapter, we focus on the particular case of a reduced order
model (3-DOF) representing the scale model helicopter mounted on an
experimental platform. We note that both cases represent underactu-
ated systems (u € IR* for the 7-DOF model and u € IR? for the 3-DOF
model studied in this chapter).

Vertical flight (take-off, climbing, hover, descent and landing) of the
helicopter can be analysed with the 3-DOF particular system. Although
simplified, this 3-DOF Lagrangian model presents quite interesting con-
trol challenges due to non-linearities, aerodynamical forces and under-
actuation. Due to the very particular dynamical and control properties
of this model, we propose a specific non-linear controller using passivity
properties.

Though the mathematical model of this system is much simpler than
that of the “free-flying” case, its dynamics will be shown to be non-
trivial (non-linear in the state, and underactuated). Some previous

*The authors of this chapter are Juan Carlos Avila Vilchis, Bernard Brogliato
and Rogelio Lozano. Juan Carlos Avila-Vilchis and Bernard Brogliato are with the
Laboratoire d’Automatique de Grenoble, France. UMR CNRS-INPG 5528. The first
author is sponsored by the UAEM (Universidad Auténoma del Estado de México).
R. Lozano is with the Laboratory Heudiasyc, UTC UMR CNRS 6599, Centre de
Recherche de Royallieu, BP 20529, 60205 Compiégne Cedex, France.
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works have been developed for control problems in helicopters [48, 63,
103].

Contrary to most of the recent works in the field of non-linear control
of helicopters , we incorporate the main and tail rotor dynamics in the
Lagrange equations. Moreover, the control inputs are taken as the real
helicopter inputs (the swash plate displacements of the main and tail
rotors and the longitudinal and lateral cyclic pitch angles of the main
rotor). This is shown to complicate significantly the way the input u
appears in the Lagrange equations.

This chapter is organized as follows. In Section 13.2, we present
some general considerations taken into account for modelling. The 3-
DOF Lagrangian model of the helicopter mounted on an experimental
platform is presented in Section 13.3. This model can be seen as made of
two subsystems (translation and rotation). The dissipativity properties
of the 3-DOF model are analyzed in Section 13.4 where one lossless
operator is shown. In Section 13.5, we present a control design for the
reduced order model. Section 13.6 is devoted to simulation results of
the helicopter-platform system. Finally, we present some conclusions in
Section 13.7.

13.2 General considerations

13.2.1 Flight modes

An experienced pilot can develop a relatively complicated take-off or
free-flight (in two/three dimensions). However, helicopters often evolve
in one of the following three flight modes.

Hover. When the helicopter is climbing, the pilot sets the helicopter to
fly at a certain height, normally OGE (out ground effect), where
the thrust of the main rotor compensates the helicopter weight
mg and the vertical drag force D,; produced by the wake effect
(the induced velocity acting on the fuselage !).

Vertical Flight. This flight mode starts when the helicopter is at rest
on the ground IGE (in ground effect). Then, take-off occurs and
the helicopter climbs. Vertical descent precedes landing. In the

'The wake effect is a very important one that is considered in the majority of
aerodynamic analysis where, for example, the pitching-up transient phenomenon
produced by the induced velocity has been studied (see [114] for example).
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absence of perturbations, the main rotor thrust is always vertical.

Forward Flight. We consider that this flight mode will be OGE. The
thrust of the main rotor has two components. The horizontal one
or traction force ensures forward flight and the vertical one keeps
the helicopter at a constant height (see Figure 13.6).

In each case, the main rotor thrust orientation must allow one to com-
pensate the pitch and roll torques that are produced on the helicopter
by external perturbations. The tail rotor thrust magnitude variation
will compensate the yaw torques of the same nature.

13.2.2 Aerodynamic forces and torques

In this section, we present a general panorama of the aerodynamic forces
and torques computing. Our interest is to provide the reader with an
idea of the 3-DOF model nature that we present in Section 13.3.

In general, the helicopter center of mass (c.m.) is not located in a
plane of symmetry. Some reference systems are defined in Figure 13.1.

Figure 13.1: Reference systems in the helicopter

e The reference system (o, z,v, z) is an inertial one.

e The reference system (cm, z, y, z.) is fixed at the center of mass
of the helicopter and attached to its body.

e The reference system (o03,%1,¥1,21) is fixed and located at the
center of the main rotor and attached to the helicopter body.
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e The reference system (o2, z2,¥y2,22) is fixed and located at the
center of the tail rotor and attached to the helicopter body.

The most important forces and torques acting on the main and tail
rotors of the helicopter are showed in Figure 13.2. In this figure, Ty,
is the main rotor thrust, T is the tail rotor thrust, Cp is the pitching
moment, Cr is the rolling moment, Cy is the yaw moment, C)y is the
main rotor drag torque, Cr is the tail rotor drag torque 2, 4 is the main
rotor angular speed and r, is the gear ratio between the main and the
tail rotors. In this work, we neglect the contributions of the horizontal
and vertical stabilizers and the ground effects.

Figure 13.2: Aerodynamic forces and torques

We use the blade element method [87] to determine the magnitudes
of the aerodynamic forces and torques. In Figure 13.3, we consider a
main rotor blade differential element.

The lift on each blade element along the blade and around the main
rotor azimuth angle + is given by equation (13.1), where AL is the incre-
mental lift (which is an infinitesimal force acting on a blade differential
element), Py is the dynamic pressure, ¢; = aa is the lift coefficient, c is
the chord and Ar, is the incremental radial distance.

AL = PdchA'I‘e (13.1)

*All these quantities represent the magnitudes of the aerodynamic forces and
torques. ‘
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*IA Blade Differential

Figure 13.3: Rotor blade differential element

We can write (13.1) in terms of the blade element conditions
AL = gVTzaacAre (13.2)

where p is the air density, V7 is the blade element chord tangent velocity
(shown in Figure 13.4), a is the slope of the lift curve and « is the angle
of attack of the blade element. The lift force for a blade (L,) and for a
given azimuth angle of the main rotor is

Ev AL
0 ATe

L,= dre (13.3)

where R)s is the radius of the main rotor. The following assumptions
are taken into account in this development.

e Twist, attack, slide and flapping angles are independent of v and
of re.

e sin(3) = § where § is the flapping angle.
o Lo = arctan(l%) ~ % where ¢, is the incidence angle.

e The flight velocity and the control inputs are independent of ~y
and of 7.

The total thrust is equal to the number of blades (p) times the average
lift per blade

SR fyi_ﬂﬂ

2 Ry
L / V2adredy (13.4)
471' 0 0
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The angle of attack a is given by equation (13.5) [87], where ¢ is the
pitch angle defined by equation (13.6) and Vp is the velocity that is
perpendicular to the blade quarter-chord line and lies in a plane that
contains the rotor shaft (see Figure 13.4).

Figure 13.4: V, and V7 velocities.

a=¢p+ arctan(“;—;) (13.5)

Ef"f-gol — Ajcos(y) — Bysin(y)  (13.6)
M
In (13.6), o is the average pitch at the center of rotation, ¢; is the
blade linear twist angle and A; and B; are the lateral and longitudinal

cyclic pitch angles of the main rotor respectively. We can now write

‘P(Tey’)’, UI,U3,U4) =0 +

2r  pRpy
Ty = pi‘:c / / (V2o + VrVp) dredy (13.7)
0 0

In the (o1, z1,y1,21) reference system, the thrust vector is given by

T sin(ug) cos(ug)
u3) sin(uy) (13.8)
u3) cos(ug)
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with Ty given in (13.7). ug and u4 are the main rotor longitudinal and
lateral cyclic pitch angles respectively (i.e. A; = u4 and B; = u3 in
(13.6)).

For the drag torque of the main rotor, we consider Figure 13.5, where
the drag torque for a blade element is given by equation (13.9).

Y %
wAlAL
l.
f—— L AD
B ¢
o
s Vi
x %AP Rotor
! Flow Shaft
Z
z
xlli\
1
1
:
. h
Y i
1
: Y
— - >
'
' % |
1

AD cos (L) - AL sin (i)

Figure 13.5: Drag torque components

ACp = (AD cos(te) + ALsin(te))re (13.9)

In (13 9) AD COS(Le) is the profile incremental drag force and AL sin(¢,)
: ental dra e due to the tilt of the lift vector.
in(te) in Thy has been neglected in
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Writing (13.9) in terms of the blade element conditions

ACy = (gcchrﬁAre + gclcVﬁAreE T (13.10)

VT) ¢

In (13.10), ¢q4 is the drag coefficient. We can write, taking into account
that ¢; = aa

ACy = %[cdvﬁre + aaVpVpr Ar, (13.11)

Taking into account equation (13.5), the number of blades and the total
contribution in one revolution, we can write

27 rRyp
Cu = ppac/ / “(VEre) + (reVE +reVrVpy)ldredy (13.12)

In a similar way, we can write expressions for the thrust and drag torque
of the tail rotor ((13.13) and (13.14)).

ac 2w Ry
Tr = ”pt t / / V20, + ViVpl, dred(r,7) (13.13)

PPtCta /27r /RT[ Cda ((Vr)s re)+((VT)2Te)a dred(ryy)

(13.14)

Horizontal forces or simply H-forces are not taken into account in our
model. However, in Figure 13.6, we can see how these forces act on the
rotors. Basic expressions for computing H-forces are

AHpr = [(AD cos(te) + ALsin(te)) sin(7y) + AL sin(B) cos(y)]m
(13.15)

and

AHr = [(=AD cos(te) + ALsin(e)) sin(r,y) + AL sin(8) cos(r,7y)|r
(13.16)

where indices M and T concern the elements of the main and tail rotors
respectively.

In this chapter, we are not interested in a detailed presentation nor in
a detailed computing of all the terms involved in the 7-DOF modelling.
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Figure 13.6: Horizontal forces

General expressions for Ty, T, Cpyr and Cr are quite complex and
are not presented here. However, we can write that aerodynamic forces
and torques are functions of generalized velocities and control inputs as
we show below. In [7], the reader can consult detailed expressions for
aerodynamic forces and torques computing and for the general forms of
these forces and torques.

TM =TM(iI,y,2,")’,U1,U2,U3,U4)
CM :CM(.’II y z ’)’ ui, u2,us U4)

g ., .’ '7 ) ) ? ) 1317
TT :TT(-T,?J,Z,%’U'2) ( )
CT = CT(CI'J,ZJ,Z.,")’,Uz)

For the 7-DOF model, the control input vector is defined by u =
[up uz uz ug]T. Here, uy, up are the main and tail rotor swash plate
displacements respectively. The helicopter flight velocity magnitude is
given by equation (13.18) (see Figure 13.1)

VIV =22 + % + 52 (13.18)

In Figures 13.7 and 13.8, we can see that for the 7-DOF model, we
are considering a three-dimensional free-flight mode of the helicopter.
In these figures, we take into account the real configuration that the
main rotor _has in a three-dimensional free-flight mode, contrary to the
analysis given in [87] where the main rotor is tilted backwards (as in
the case of autogiros).
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Figure 13.7: Main rotor speed components

In Figures 13.7 and 13.8, V is the flight velocity magnitude of the heli-
copter. The vector associated with this velocity has the opposite direc-
tion of the helicopter flight velocity, Vj; is the velocity that is parallel
to the rotation plane and § is the slide angle.

For the computing of aerodynamic forces and torques, only the ve-
locity Vp that is perpendicular to the blade attack side is taken into
account [87, 111]. From Figure 13.7, it is easy to write that

Vr = |V]cos(as) sin(y — &) + re (13.19)
The velocity Vp is formed by several terms

|V'| cos(exs) cos(8) sin(B) cos(y)
(13.20)
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Figure 13.8: Tail rotor speed components

where V sin(a;) is the perpendicular component of the flight velocity,
Vioear 18 the local induced velocity 3, reB is the contribution of the vertical
flapping motion and V cos(a;) cos(d) sin(B) cos(y) is the effect of the
flight velocity component on the rotation plane of the main rotor (acting
on the wing upper surface when v = 0 and on the wing bottom surface
when v = —m).

When § = 0 and oy is small, the expressions obtained in [7] for
aerodynamic forces and torques become those proposed by [87] in the
forward flight case. Moreover, when V' = 0, these expressions become
those of the hover mode.

13.2.3 Inertia moments and products

The main and tail rotor inertia tensors are calculated with respect to
the reference system (c¢m, z¢, yc, z¢). In this reference system, we denote

3 Expressions torcalculate therinducedvelocity in hover, in vertical and in forward
flight can be found in [87]. In [7], one more general expression to calculate the
induced velocity for a more general 3D flight mode is given.
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v = [zm ym 2m)T and rr = [z7 yr 2r|T as the position vectors for
the main and tail rotor centers respectively (see Figure 13.1).

In Figure 13.9, we represent the main and tail rotor blades. In this
figure, 7. is the radial distance from the rotation center to the blade dif-
ferential element dr, ¢ and ¢; are the main and tail rotor blade chords
respectively, d and b are the main and tail rotor blade lengths respec-
tively. We assume that the blade geometric form is that of a rectangular
prism (dchy for the main rotor and beihy for the tail rotor).

I |
r, yb 22
Main — Rotor Blade Tail ~— Rotor Blade

Figure 13.9: Helicopter blades

We use the next classical definitions for inertia moments (13.21) and
products (13.22). In these equations, we only show the main rotor
notation for I, and I;, with mjps the main rotor blade mass.

d d d
= = r v = 72 M g .
zm—/O [r2]dm—/0[21pd /0[2] ¥ (13.21)

d d d
= T m = T V= T m_M'I' .
Loy = [ lovlam = [“ovlodo = [(fey) ™ar (1322

In (13.21), r is the distance between the mass element and the z axis.
In (13.22), z and y represent the distances between the mass element
and the planes yz and zz respectively. The definitions for the rest of
the inertia elements are similar.

From Figure 13.9, using (13.21) and (13.22) and for the (o1, z1,¥1, 21)
reference system, we can write for the main rotor (considering two
blades)

d
2
Iy = 2/ [r? sinz('y)ntTM] dr, = gdez sin?(y) (13.23)
0
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d
m 2
Iy = 2/ [r2 cosz('y)TM] dre = §de2 cos? () (13.24)
0
d zmM 2 2
Lay=2]| [r: 4 —]dre = §de (13.25)
0

Ipy1 = ——2/ [rZ sin(y cos('y) ]dre = __%dez sin(7y) cos(7)
(13.26)

It = Iy =0 (13.27)

For the tail rotor, we write for the (02, 2, y2, 22) reference system

2
Iz —2/ [rZ sin® 1'77) 5 ]dr'e = ngb2 sin®(r,7) (13.28)

Tyy2 = 2/ [7’2 0T ldre = —me2 (13.29)

b
2
I.,,= 2/ [r2 cosz(r,,'y)—";—T] dre = ngbz cos?(r7) (13.30)
0

Ipyo = Iy;2 =0 (13.31)

b . m 2 )
I = —2/ [rg sin(r,y) cos(r,y'y)TT] dr. = —ngb2 sin(ry7y) cos(r,7)
0
(13.32)

Here, mp is the tail rotor blade mass.

We use the parallel axes theorem (see, for example, [94]) to cal-
culate the general inertia moments and products with respect to the
(cm, Te, Ye, 2c) reference system. With the assumption that zpr = ypr =

e ine elements are simplified.
and simplified inertia elements are
tively. Note that D = :c% + y%.
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I | General | Simplified l
Iz | 2ma(3dsin®(y) + (v3; + 2%)) Z’mM(i,d2 sin (’Y) + ZM)
Iy | 2mp(3d% cos?(v) + (z3, + 22;)) | 2mar(3d2 cos?(y) + 22)
I,, %dez + 2mp (23, + v2,) gdez
Iy | 2mp(— %dz sin(y) cos(y) + emym) | — %dez sin(y) cos(7)
I;,;z 2meMzM 0
Iyz 2mpmymzm 0

Table 13.1: Main rotor inertia elements

| [ General ] Simplified I

Ly | 2mr(30° sin®(ryy) + (3 + 27)) | 2m7 (367 sin®(ry7) + ¥7)
Iy %mr_rb2 + 2mT(.1:% + z%) %mez + 2me%
I, 2mr(3b% cos?(ryy) + Dr) 2my (36 cos?(ryy) + D)
Iy 2mrrTyT 2mrrTyr
I, | — %me2 sin(2r,y) + 2mrzrzr — %mr_rb2 sin(2r,7)
I, 2mryr2r 0

Table 13.2: Tail rotor inertia elements

13.2.4 The general model

This model is based on energy considerations. We use the kinetic and
the potential energies of the system. Kinetic energy is formed by four
quantities, the helicopter translational energy, the fuselage rotational
energy and the main and tail rotor rotational energies. Potential en-
ergy is formed by the gravitational potential energy and by the elastic
potential energy associated with flapping phenomena 4.

In Section 13.3, the Lagrange equations for the 3-DOF system will
be derived. This formulation will allow us to calculate the inertia and
Coriolis matrices and the conservative forces vector for this particular
case.

In this section, we only give the form of the general 7-DOF model.
The reader is referred to [7] for details of the structure of the model
elements. The general model developed for the free-flight mode of heli-

“Main rotor vertical flapping is assumed to be made up of a coning angle and of
a first harmonic motion. Tail rotor flapping in neglected.
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copters has the following form

M(q)i+ C(q,9)d + G(q) = JE [D(d,u)u + A(d)u + B(¢q)]  (13.33)

where M € IR™7 is the inertia matrix, C € IR™*7 is the Coriolis ma-
trix, G € IR is the vector of conservative forces, ¢ € IR is the gener-
alized coordinates vector, Jg € IR"™7 is a Jacobian matrix between the
generalized forces space and the external forces space applied on the
helicopter and u € IR* is the control input vector.

13.3 The helicopter-platform model

We consider Figure 13.10, where the VARIO helicopter mounted on an
experimental platform is represented. It is important to say that in this
particular case, the helicopter is in an OGE condition (platform height
> main rotor diameter). The effects of the compresed air in take-off
and landing are then neglected.

In Figure 13.10, the counterbalance weight compensates the weight
of the vertical column of the platform. The zyz reference system is an
inertial one and the z1y;2; reference system is a body fixed frame. The
model is obtained by a Lagrangian formulation. The kinetic energy
T is formed by four quantities: T3, T,r, Trar and T, corresponding
to translational kinetic energy and rotational kinetic energies of the
fuselage, of the main and of the tail rotors respectively. The potential
energy is formed by the gravitational potential energy U, and by the
elastic potential energy U, associated with the vertical flapping. In the
particular case that we present here, U, = ka2 where k is the stiffness
of the main rotor blades and ag is the coning angle.

The model has the following form

M(q)§ + C(q,9)q + G(q) = Q(u) (13.34)

where M € IR**3 is the inertia matrix, C € IR**? is the Coriolis matrix,
G € IR® is the vector of conservative forces, @ = [f, 7, 7,7 is the
vector of generalized forces, ¢ = [z ¢ 7|7 is the vector of generalized
coordinates and u = [u; )T = [hps hr]T is the vector of control
inputs. Here, f,, 7, and 7, are the vertical force, the yaw torque and
the main rotor torque respectively. The height z < 0 upwards and ¢ is
the yaw angle. The swash plate displacements of the main (hps) and tail
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Counterbalance
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Figure 13.10: Helicopter platform

(hr) rotors are proportional to their respective collective pitch angle as
in (13.35).

_ Yy Wi
[eolk = arctan(bli) B, (13.35)

where if j =1, theni=mand k =M, if j =2theni=tand k =T.
Here, M and m stand for main rotor and T' and t for tail rotor. In
Figure 13.11, we can see bl;.

The components of the vector Q take the particular form (13.36) [7}:
f: = Ty + Dy;, 7, = Trzp and 7., = Cyr + Cpor. Here, Cpop is the
engine torque.

cs¥2u1 + oy + cio
Q= c11y?ug (13.36)
(c129 + c13)ur + c1a¥? + c1s

Remark 13.1 The motor dynamics are slower than those of the main
rotor. However, in scale model helicopters, there is a coupling between
the motor power and the main rotor blade collective pitch angle by the uy
input as a consequence of handling conditions. In real helicopters, the
motor power s associated with an independent third input (the throttle
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Blade
Support

. i=m,t j=12
-* Blade

Figure 13.11: bl; for ¢ = m,t

lever) that would represent for the helicopter-platform model a com-
pletely actuated system. |

Remark 13.2 The main rotor thrust Tas or 4 are not used as inputs
in (13.36) because % is very small due to the motor capabilities. Given
that 41 and Uz can be larger than 7, u; and uy are preferred as inputs.
|

The Lagrangian formulation of (13.34) is as follows. The translational
kinetic energy (7%) is

L .o

where m is the helicopter mass. The rotational kinetic energies for the
fuselage (T,r), the main (T,ps) and the tail (T,7) rotors are

1

TrF = 5 zzf.F(&2 (1338)

(13.39)

(13.40)
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We denote I;r as the inertia moment with respect to the i axis and
I;jr the inertia product with respect to the :j axes for R = F, M, T.
F stands for fuselage, M for main rotor and T for tail rotor. In this
development, we use the simplified inertia elements of Table 13.2 and
we assume that the fuselage inertia tensor is constant and diagonal.
The potential energy is

U = —mgz + ka? (13.41)

where ag is a constant coning angle ®. The Lagrangian function L is
then given by

L=1ims?+ 1L.pd* + LL.m(d + %)
_ (13.42)
+3L7¢* + 3Ly yPr2 + mgz — kal

The Lagrange equations of the helicopter motion are given by the next
expressions [33]

gt_ [gﬂ _ gi — 0 (13.43)
with ¢ = 1,2,3. So we write
E=mg
= (13.44)
%L = —2mqpb®r, sin(r,y) cos(7yy)p?
%ff =mz
%5 = Lord + Lan (94 9) + 2mr(oh +43)9 + Jmrb? cos?(ry7)

% = IzzM(q‘5 + 7) + Inyrg’.Y

(13.45)
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I

i [32] = m#

)

a‘it [jﬁ'] = IzzF(b. + IzzM(‘% + ’)’) + 2mT(:z%~ + y%)d)
(13.46)

T 2mpb? cos?(ry)) — Smrb? sin(ryy) cos(ryy)ry v

d% [%] = zzM((i + 7) + Iny'r?Y"i'

The various terms in (13.34) are obtained from (13.44), (13.45) and
(13.46) as follows

Cy 0 0
M(g)=| 0 c1+cocos?(csy) ca
0 cq cs
0 0 0
C(q,4)=| 0 cosin(2es7)7  cosin(2es7) (13.47)
0 —cgsin(2csy)d 0

We note that cocs = —2cg and that M — 2C € SS(3) . The ¢;'s i =
0,...,7 are the constant physical parameters given in Table 13.3. One
sees that this model is made of two main coupled subsystems Siransiation
and Syotation With states (z,2) and (¢, #,v,7) respectively. This will be
used for control design.

With the assumption that the helicopter evolves at low rates of verti-
cal velocity so that the vertical flight induced velocity (v,) and the hover
induced velocity (v;) are approximately equal, modelling the general-
ized forces vector as Q(u) = A(q)u + B(¢) and from (13.36) we can

etric matrices set. A matrix S is said to
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write

[ 03’3/2 0
A(q) = 0 c1y?
| cizy+cas O
(13.48)
[ coY + cao
B(q) = 0
| c1a¥? + e

The ¢;’s ¢ = 8, ..., 15 are the constant physical parameters given in Table
13.3. The values of all the parameters are given in [7].

l c; [ Definition l Value [
co m 7.5 kg
e1 | Lar + Loy + 2mp(a? + y2) | 0.4305 kg - m?
c2 %mez 3e * kg-m?
c3 Ty —4.143
C4 I.u 0.108 kg - m?
cs L,m+ r,2YIny 0.4993 kg - m?
Cg %me2r7 6.214e~4 kg - m?
cr —mg —-73.58 N
3
cs % 3.411 kg
co PP oy 0.6004 kg - m/s
C10 %mg 3.679 N
R3 2
cit wazﬂ —0.1525 kg - m
c12 —%vh 12.01 kg-m/s
1C13 Kengiv:e 165 N
c14 % 1.205¢ ™% kg - m?
c1s —depealty 2 ~2.642 N
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13.4 Dissipativity properties of the 3-DOF
model

The use of passivity has been at the core of the design of many feedback
controllers in the past 15 years (see [56]). The interest of passivity-
based controllers comes from their physical foundations (contrary to
some other non-linear stabilization techniques that rely only on the
state space equations structure). They also prove to provide nice ex-
perimental results [56].

The design of a passivity-based controller for (13.34) is, however,
quite specific due to both the Lagrangian dynamics and the form of
Q(u). More precisely, the z dynamics in (13.34) plus the fact that the
inputs in u are not generalized forces, precludes the dissipativity of the
operators

Ol:ur—>q'
Oz : Q(u) —~ ¢

This is a property that is crucial in the design of passivity-based con-
trollers, which assures global tracking control of (g(¢),¢(t)). However,
the operator

O3:a2 Au+Bon2[p 4T (13.49)

is passive lossless, with
M:[ng mzs} C":[c” 623]
m3z2 M33 cz2 O
T _ 0 as2 5 0
A—[am 0] B-[bs]

The proof is easy by noting that M -2C is skew-symmetric [56].

(13.50)

13.5 Control design

For feedback control purposes, we will use both the structure of the
model dynamics, and the physical property of the operator O3 : @ — 1.
In the following, we assume that initially |y(0)| > d > 0 and 2(0) < 0,
so that A is full rank. Therefore, the control design is done as follows.
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13.5.1 Passivity-based control of the rotational part
The rotational dynamics is given by (see (13.50))

M (n)ij + C(n,n)n = A(7)u + B(n) (13.51)

It is noteworthy that these dynamics also represent the rotational part
of the system when the helicopter has not taken off, i.e. when z = —L
(see Figure 13.12).

L mass centre

S S S S A S S S S
zV

Figure 13.12: Mass center localization

Let us choose u in (13.49) such that

@ = M(1jg — M) + C(nia — M) — Ao (7 + A1) (13.52)

where 7 = n — 74, 14(t) € C*(IR") is a desired trajectory, A; > 0
and A2 > 0. The input (13.52) is known to guarantee that 4,%,7 — 0
globally, asymptotically and exponentially [56].

13.5.2 Take-off

The basic idea is to use ¥ (in fact 94) to control the first equation in
(13.34), i.e.

coZ +cr = Cg’.)’z’u,l + c9y + c10 (13.53)

with u; given by (13.52). Assuming that ||7|| < e, i = 0,1,2, and
¢4 = 0, one can approximate u; in (13.52) as

1 . .
uapp = 0—31[05’)’,1 - 6147d2 — 015] (13.54)

From (13.53) and (13.54), it is clear that if v, is constant, then the
altitude z(t) = at’> + bt + ¢, a,b,c € R.
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13.5.3 Altitude control
From (13.34), taking into account (13.36) and (13.47), we have

£ = o-[es¥ur + co¥ + 10 — 7]

éﬁ = 1 (o) s (c11")’2’lla2 — 2¢g Sin(2c37)'.74.5)

ci1c5—Cc2+cacs co
1

—ca((c127y + c13)u + cosin(2c3y)d? + c1a¥? + c15)]
(13.55)

. — 1
v c1es—c2+cacs cos?(c37)

[—ca(c11?ug — 2¢6 sin(2c37)74)

+(c1 + ¢ cos?(c37)) (127 + c13)u1 + ¢ sin(2csy) @

+c14%% + c15))

When the helicopter has attained a certain height (z = —hg), we pro-
pose to switch the control to

u = ﬁz[w — c10 — coy + co(Fia — A3z — MaZ)]

up = —Lr[(cres — & + caes cos®(es7)) (ba — Asd
(13.56)

—Xe9) + 2c5¢5 sin(2c37)7¢ + ca((c12y + c13)ur

+cg sin(2c3y) 2 + cra¥? + c15)]
Hence the closed-loop system becomes (see equation (13.55))

4+ X3z2+M2=0

b+ Ash+ Aed =0

oy [~ ealen ¥ uz — 2c6 sin(2c3y)¥$)  (13.57)

v= ci1cs—c2+cacs cos?

+(c1 + ¢z cos?(c3y))((cr2y + c13)ur + cg sin(2c3y) @

+c147? + c15))]

the motor power is associated with
e remark 13.2), we can compensate
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by w1 = u1(¥,v1) the gravity term in the first equation of (13.55), using
uz = us(uy,vs) in the last equation to compensate for the terms intro-
duced by the first input and for those in the last row of vector B(q) and
using ug = uz(y,v2) in the second equation where v; i = 1,2,3 are new
wnputs to arrive at

U1
M(q)§+C(g,9)g = | v2 (13.58)
U3
One sees that the operator
O:[vr va v3]T [z ¢ #T (13.59)

is passive, so that a passivity-based controller can be easily designed [56].
[ |

There are several crucial choices in this procedure:

i) The input in (13.52), to control the rotational dynamics of the
system.

i1) 94(¢) and a hybrid strategy, to control the translational dynamics
of the system.

iii) n4(t) and z4(t), to comply with input saturations u}, < u; < 0
and ufn <ug < uﬁ,f Here, u}, < 0, 1 =1,2 and u%,, > 0.

The technique employed to cope with input saturations is as follows:
from (13.52) and assuming perfect tracking (7 = 77 = 0), one sets

u = A" (Y4(t))[M (na)iia + C(na, 1a)1a — B(¥a)] (13.60)

From this expression, one calculates off-line whether u}n <wu; <0 and
u2, <wug < u%,f Then the saturations are respected, provided the initial
tracking errors 7(0) and 77(0) and the feedback gains A;, A, are chosen
to be small enough. Moreover, some numerical results show that the
input may saturate during the transient without destroying the stability
of the closed-loop system.

When 44 = 0, 74 = constant, a sufficient condition to get a negative
u; input in (13.60) is given by

¢ sin(2¢37a)bg + 1473 + 15 > 0 (13.61)
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13.6 Simulation results

We performed some simulation experiments in MATLAB/SIMULINK
for the 3-DOF system. Here, we present two of them. In [6], we present
three different simulations with a larger number of results. We used a
fixed-step ode4 Runge-Kutta solver with step 0.005. Results concerning
the flying mode (2 < —L) are not presented here, but can be easily
simulated. The control of the rotational dynamics in (13.51) is in itself
a challenging problem.

13.6.1 Simulation 1

We took the gain values of the control (13.52) A; = 8, Ay = 10 and
the initial conditions ¢9 = 0 rad, q‘SO = 2 rad/s, vo = —5 rad and
Y0 = —55 rad/s. The helicopter was not taking-off the ground. This is
a regulation problem for the desired values given below

® ¢g=—% rad
e ¢3=0 rad/s
e ¢3=0 rad/s?

Yg = —59t rad

Y4 = —59 rad/s

Y2 =0 rad/s?

13.6.2 Simulation 2

We took the same desired values as in simulation 1 but with the gain
values of the control (13.52) A\; = A2 = 1 and the initial conditions
¢o = —7 +0.1 rad, $o = 1rad/s, yo = —0.1 rad and ¥y = —58 rad/s.

In Figures 13.13 to 13.15, one sees that the input may saturate during
the transient without destroying the stability of the closed-loop system.
In Figures 13.16_to 13.18, one sees that decreasing the feedback gains
and the initial errors allows one to respect the input saturations and to
improve the transient behaviour.
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13.7 Conclusions

In this chapter, we have considered the feedback control of a scale model
helicopter mounted on a platform. The resulting model is a 3-DOF
Lagrangian system, with two inputs. This is therefore an underactu-
ated system. Some aerodynamical effects have been incorporated in
the model to obtain the generalized torques as a function of the inputs
(the swash plate displacements of the main and tail rotors) and of the
main rotor angular velocity. The complete model also incorporates the
transition from the constrained mode (the helicopter is at rest on the
ground) to the flying mode (the helicopter is airborne).

The proposed control strategy is based on the use of non-linear con-
trollers that assure asymptotic tracking of suitable (i.e. differentiable
enough and such that the inputs do not saturate) desired trajectories.

Mechanical and aerodynamical coupling effects are taken into ac-
count in the model and in the control action. The dissipativity proper-
ties of the rotational part of the dynamics are used to partially design
the state feedback control. Numerical simulations are presented to show
the performance of the proposed controller.

The one-way transmission between the power shaft and the main
rotor hub could be taken into account in the modelling task. Also, a first
or a second order transfer function could be used to represent the motor
dynamics. This will result in a more complex model. However, in this
case, it is clear that the control problem will become more complex due
to the additional dynamics. In this work, we have implicitly assumed
that the system evolves in the bandwidth of these motor dynamics.
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azimuth angle error simulation 1
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Chapter 14

Lagrangian helicopter
model

14.1 Introduction

There is a growing interest in the construction and control of au-
tonomous model helicopters [47, 90]*. Recently, a number of authors
from the control community have begun to investigate an integrated
non-linear dynamic model of a scale model autonomous helicopter
(cf. conference papers [28, 62, 95, 101, 119] and more recently the jour-
nal papers [93, 102]). Model helicopters display a considerably different
dynamic response than full scale helicopters. For example, the classical
model [87, pg. 557] used for a full size helicopter does not model the
interaction of the rotor blade dynamics with the rigid body dynamics of
the airframe. Instead, the rotor blade dynamics are incorporated into
the modelling of a daunting collection of aerodynamic and parasitic
forces, which in turn act on the rigid body dynamics. It appears from
experience that the regulation of the rotor speed of a model helicopter
is an important part of the integrated control problem [118].

A simple dynamic representation of the full behaviour of a helicopter
in all flight modes does not exist due to the different nature of the vari-
ous aerodynamic forces in different flight conditions. As a consequence,
a reasonable approach to the general control problem is to consider each

*The authors of this chapter are Robert Mahony and Rogelio Lozano. R. Mahony
is with the Department of Electrical & Computer Systems Engineering, Monash
University, Clayton, Victoria, 3800, Australia. R. Lozano is with the Laboratory
Heudiasyc, UTC UMR CNRS 6599, Centre de Recherche de Royallieu, BP 20529,
60205 Compiegne Cedex, France.
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flight condition separately, develop practical control laws for the vari-
ous models based on foreseen mission requirements and then combine
these into a practical control algorithm using hybrid control theory. For
several reasons, the dynamics of a helicopter for manoeuvres close to
hover are the simplest of all the possible cases to consider. Firstly, the
parasitic aerodynamic force due to relative wind velocity is negligible.
Furthermore, the rotor flapping angles (which are used to induce the
rotational torque for pitch and roll control) are algebraic functions of
the cyclic pitch angles (commanded by the pilot). This is not true in the
presence of relative wind. Studying manoeuvres close to hover is im-
portant for mission objectives involving hovering, take-off and landing
manoeuvres. The above discussion motivates the interest in studying
the modelling and control of a model helicopter in the particular case
where the aerodynamic effects are trivialised (hover type manoeuvres)
and in which the rotor dynamics are fully considered.

In this chapter, we present two main results. Firstly, we present a
simple dynamic model for an autonomous model helicopter for manoeu-
vres close to hover. The model is based on a Lagrangian expression for
the energy of the system and varies from classical analysis in that we
simplify the aerodynamic effects significantly but do not simplify the
mechanical interaction of the main rotor blades with the full rigid body
dynamics of the airframe. The model is a first step in a more detailed
modelling of the dynamics of a helicopter with control as the objective
rather than analysis. The model obtained is in block pure feedback
form [49] and consequently a stabilizing (and local path tracking) con-
trol law may be designed based on backstepping techniques. However,
the desired variables which we wish to track do not all enter at the first
level of backstepping, nor do all the blocks of the system have the same
dimension. As a consequence, we introduce two variations to standard
backstepping procedures. Firstly, all controls are adjusted to have the
same relative degree with respect to the first block of the block pure
feedback system. This is done by dynamically extending those inputs
that occur earlier in the cascade. Secondly, at each stage of backstep-
ping, the full error is preserved (rather than assigning available controls
directly and backstepping the remaining variables separately) and aug-
mented by additional path tracking errors that are added when the
appropriate relative degree requirements are satisfied. In this manner,
a_control law is_designed that makes the overall system passive from
the dynamically extended controls to a set of outputs derived from the
tracking error. There is a considerable advantage associated with the
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proposed design procedure in comparison to the more classical back-
stepping approach, where each variable is separately considered, due
to the saving in the algebraic complexity of the control design and the
increased robustness associated with not having to cancel introduced
non-linearities. By approaching the problem in this manner, it is pos-
sible to develop a unified control strategy that stabilizes the position
and orientation of a helicopter as well as regulating the rotation of the
main rotor blades. This is in contrast to many published control laws,
where these tasks are separately considered [118].

Finally, we would like to point out that dynamic reduction type
designs [31] should allow the results obtained to be extended directly to
deal with secondary aerodynamic effects. For example, peaking analysis
designs for simplified models of VTOL jump jets [91, pg. 246.] are based
on a direct passivity controller for the unperturbed system followed by a
peaking analysis. Analogously, we expect that by reducing the gains on
the linear stability response in accordance with a peaking analysis and
effective high gain type design (cf. [91, pg. 239]), the passivity-based
controller designed in this chapter should be valid over a large range of
initial conditions and desired paths.

The chapter consists of five sections. After the introduction, Sec-
tion 14.2 presents the model considered in the sequel. In Section 14.3,
a Lyapunov control law is derived based on a modified backstepping
procedure. Section 14.4 presents an analysis of the proposed control,
which provides some insight into the effect of the rotor dynamics on the
overall helicopter dynamics. Two simulations are presented, showing
the effects of unknown air resistance terms in the control design. The
final section contains some brief conclusions.

14.2 Helicopter model

In this section, a Lagrangian model is derived for an autonomous model
helicopter in terms of a local coordinate representation. The model
considered is valid for moderate trajectory tracking, where the complex
aerodynamic forces associated with the rotor response may be approx-
imately compensated for by a static non-linear transformation of the
control inputs.

Consider Figure 14.1. Denote the body or airframe of the helicopter
by the letter A, the main rotor blades by the letter B and the tail
rotor by the letter C. In addition, the helicopter as a whole is labelled
by the letter H. Let Z = {E;,E,, F.} denote a right hand inertial
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frame stationary with respect to the earth and such that E, denotes
the vertical direction (cf. Figure 14.1). Let the vector ¢ = (z,y,z)
denote the position of the center of mass of the helicopter relative to
the frame Z and a fixed (but arbitrary) zero point lying on the surface
of the earth.

Figure 14.1: Diagram showing some of the notation used in the model
of the Helicopter

Let A = {E{,ES,E$} be a (right hand) body fixed frame for A.
We choose EY to correspond to the normal direction of flight of the
helicopter, Ef is orthogonal and in the horizontal plane, while E§ should
(hopefully) correspond with E, in normal stationary hover conditions
(cf. Figure 14.1). Analogous to the above, define B = {E?, E5, E3} to
be a body fixed frame for B.

Force control is obtained from lift due to the main rotor blades. The
direction of the actual lift is oriented perpendicular to the orientation
of the main rotor disk. In a full sized helicopter, the flexibility of the
rotor blades is such that the orientation of the main rotor disk is not
fixed perpendicular to the hub axis of the rotor blades. In fact, the
aerodynamic and centrifugal forces acting on the rotor blades are more
than 100 times stronger than the forces associated with the rigidity of
the rotor blades and consequently, given a non-zero cyclic pitch input,
the main rotor disk will quickly deform (in around the time it takes for
a.single rotation of the rotor blades, usually less than a second for a
full sized helicopter) to balance the aerodynamic and centrifugal forces.
This effect still results in torque control over pitch and roll directions
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since the tilt of the main rotor thrust itself generates rotational torque
around the center of mass of the helicopter. The rotational torque ob-
tained is directly proportional to the component of the main rotor thrust
orthogonal to the principal lift direction — E$ and the offset between the
main rotor hub and the center of mass.

For a model helicopter, the situation is somewhat more complicated
due to the relative rigidity of the rotor blades in comparison to their size
and the centrifugal and aerodynamic forces that act on them. There
is clearly a non-trivial component of the torque force generated by a
cyclic pitch input that is derived directly from the mechanical coupling
of the rotor blades to the rotor hub and centrifugal forces. Along with
the low inertia of a model helicopter (and correspondingly small torque
inputs required to obtain desired rotation), the rotor blade deflection
due to cyclic pitch input is small in comparison to that obtained for a
full sized helicopter. Even for a full sized helicopter, the measured rotor
deflection angles tend to be less than 5 to 7 degrees. Thus, to a first
approximation, it is possible to assume that the rotor blades are fixed
rigidly to the rotor hub without flexibility and that the corresponding
torques are generated directly from aerodynamic forces acting on the
rigid rotor blades. Though this assumption is clearly an approximation,
it should be accurate to within the precision of the control tasks consid-
ered. The actual control inputs applied to a physical model helicopter
must be computed with respect to the full analysis of the rotor blade
flexibility. As long as the manoeuvres considered are not too aggressive,
then the relative wind effects are negligible and the secondary aerody-
namic effects may be ignored. In this case, the transformation between
a desired torque input to the full mechanical system and the control
inputs is a static non-linear relationship. In this chapter, we consider
the physical torques directly as inputs and assume that the transforma-
tion between the desired inputs specified by the control design and the
actual physical control signals is a known algebraic function.

The discussion given above is summarised in the following formal
assumptions

Assumption 14.1 i) Due to the high angular velocity of the main
rotor blades, they are modelled as a disk rather than as separate
rotating blades. This disk is termed the main rotor disk and is
assumed to rotate in an anti-clockwise direction when viewed from
above.

i) Since only moderate manoeuvres are considered, the flexibility of
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vi)

vi3)

vi11)
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the rotor blades is ignored and the rotor disk is modelled as an
infinitely stiff disk with infinitesimal thickness. The rotor disk is
assumed to always rotate in the plane perpendicular to ES. We
assume that EY = EY.

The tail rotor is considered to have no angular inertia. The aero-
dynamic force exerted by the tail rotor on the helicopter airframe
s assumed to be purely a rotational torque around the azis EY.

The lift provides a translation force Fy (heave) acting directly
through the center of mass of the airframe and permanently ori-
ented in the direction E (cf. Figure 14.1).

Orientation control is modelled as three independent torques
{T'1,T2,T'3} around each of the three body fized frame directions
{E{,E$,E$} (cf. Figure 14.1). These torques are applied directly
to the airframe and do not result in any translational forces (small
body forces) associated with secondary aerodynamic effects or flez-
tbility of the rotor blades.

The magnitude of all torques and forces generated by the rotor
blades are modelled directly by control inputs. The actual control
inputs for a physical system are generated via an algebraic rela-
tionship that depends only on known data, including the full state
of the system and perhaps some knowledge of conditions.

It is assumed that the engine dynamics operate on a time scale
much faster than the airframe dynamics, or that they are insignif-
icant with respect to the airframe dynamics, or that a sufficiently
good model of the engine dynamics is known, which can be inverted
to allow the engine torque to be directly applied to the blades.

The only air resistance modelled is a simple drag force acting to
slow the main rotor blades of the helicopter.

The earth is assumed to be flat.!
[ |

Due to Assumption 14.1(iii), the dynamics of the tail rotor need not
be separately modelled. The tail rotor is thought of purely as a means
to generate a torque around the axis E§ and to counteract the effect of
the drag on the main rotor blades.

!Navigation is the least of our worries.



14.2. HELICOPTER MODEL 231

The orientation of the helicopter airframe is given by three Euler
angles

v=1_(¢,0,9) (14.1)

which are the classical “yaw”, “pitch” and “roll” Euler angles commonly
used in aerodynamic applications [33, pg. 608]. Firstly, a rotation of an-
gle ¢ around the axes E, is applied, corresponding to “yaw”. Secondly,
a rotation of angle 0 around the rotated version of the E, axis is ap-
plied, corresponding to “pitch” of the airframe. Lastly, a rotation of
angle v around the axes EY is applied. This corresponds to “roll” of A
around the natural axis Ef. It should be noted that the Euler angles
v = (¢,0,1) are not a global coordinate patch on SO(3). Indeed, once
6 > %, then the correspondence between the Euler coordinates and the
rotation matrices in SO(3) is no longer one-to-one. Using Euler angles
to represent the system dynamics will not be a problem for moderate
manoeuvres.

The rotation matrix R(¢,8,1) € SO(3) representing the orientation
of the airframe A relative to a fixed inertial frame is?

CoCy SySeCy — CySp CypSHCH + SyS¢
R := R(¢,0,v) = CoSp SySeSe t+ CyCyp CySeSe — SyCy (14.2)
— 89 S¢Cg C¢Ca

In addition, the relative angle of the rotor blades B to the helicopter
airframe A is required to add the dynamics of the rotors. This angle is
denoted as «y and is given by

y = cos™ (B}, B) = cos ! ((BY)TBY)

where E? is an axis of a body fixed frame for B lying in the plane of
the rotor disk.
The generalized coordinates for the helicopter H are

q=(z,9,2,¢,0,9,7) € R

The generalized coordinates partition naturally into translational and
rotational coordinates

¢=(z,y,2) €R®, n=1(4,0,9,7) € R? (14.3)

2The following shorthand notation for trigonometric function is used:

cg := cos(B), sp :=sin(p)
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Remark 14.1 If the tilt of the main rotor disk was considered explic-
itly, then it would be necessary to add two extra coordinates to represent
its orientation with respect to the helicopter airframe and deal with the
additional complications arising from the misalignment of the main ro-
tor disk in deriving the expression for the energy discussed below. Due
to the extreme time scale separation between the dynamics associated
with the flapping angles (tilt of the main rotor disk) and the rigid body
dynamics of the helicopter, it is not clear that a full Lyapunov model
would have much practical validity. |

The translational kinetic energy of the helicopter is
m . .
Tirans == 5‘(&6)

where m denotes the mass of H.

Let I4 denote the inertia of the airframe A, with respect to the
center of mass of H, expressed (as a constant matrix) in the body fixed
frame A. Let 2, denote the angular velocity of the airframe in the body
fixed frame .A. Then the rotational kinetic energy of A is

1
Tr%t = E(QG’IAQG)

Due to Assumption 14.1(ii), the orientation of B is obtained directly
from the orientation of A by an additional rotation of angle v around
the FE$ axis. Thus, the angular velocity of B expressed in the frame A
is

Here, es is the unit vector with a one in the third position. In the
frame A, then e3 = Ef, however, the above notation emphasises that
the expression obtained is algebraic.

The inertia of the rotor blades in the frame A may be approximated
by that of a disk rotating about a point not at its center of mass.
However, since the geometry of a helicopter ensures that the center of
mass of the airframe A and the blades B both lie on the axis Ef, then
the center of mass of the helicopter H must also be co-linear with these
points. Thus, the inertia matrix of the rotor disk, relative to the center
of mass of H, and expressed in the body fixed frame A is a constant
diagonal matrix

IB = dla‘g(Iijv Igv Ig)
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Here, I} is the moment of inertia of the blades around their main axis
of rotation. The combined rotational kinetic energy of A and B can
now be written directly as

1 1
Trot = §<Qa:IAQa) + Q(Qba IBQb)
1 1 ] .
= §(Qa>IAQa> + 5((Qa + 7e3), Ip(% + Yes3))
1 1. .
= E(Qm (Ia+1B)Q) + —2-72I§ + ¥(Qq, Ige3)
Let
0
I4+1p 0
Iy = . | e RV (14.4)

0 0 J O (4
Due to its construction, the matrix Iy is positive definite. Furthermore,
it is easily verified that

T = (9, 9), T (0 7)

An angular velocity in the body fixed frame A is related to the general-
ized velocities (¢4, 6,1) (in the region where the Euler angles are valid)
via the standard kinematic relationship [33, pg. 609]

%= ¢so
Q, = Qc,/, + ¢cosy

¢69C¢ - 98¢
Defining
—3g 0 10
| cesy ¢y 0O
W, = cocy —sy 0 0 (14.5)
0 0 01

then
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Remark 14.2 Note that
det(W,) = — cos(0)

and thus the kinematic transformation between angular velocity Q and
its representation in generalized coordinates 1) is non-singular for all

orientations except those where 8 = 7. ]
Define
I:=1(n)=WlIgW, (14.6)

and observe that
1 ) ) 1,. .
Trot := E(Wun,IHWun> = 5(77:]177>

Thus, the matrix I := [(n) acts as the inertia matrix for the full rota-
tional kinetic energy of the helicopter expressed directly in terms of the
generalized coordinates 7.

The only potential that needs to be considered is the standard grav-
itational potential given by

U =mgz

where we recall that £ = (z,y, z) is the center of mass of the helicopter.
The full Lagrangian function £ is now

[:(q, Q) := Thrans + Trot — U

- %méTé + %r)THi) — mgz (14.7)
External forces and torques applied to the helicopter airframe are due to
aerodynamic lift generated by the rotor blades. The angle of attack of
the rotor blades is varied systematically during rotation according to the
orientation of the swash plate. The lift generated can be manipulated
to yield an overall lift (termed heave), and two differential torques that
result in pitch and roll of the airframe. A third independent torque is
provided by the tail rotor.

According to Assumption 14.1(iv), there is a single translational force
acting in direction £5. Thus, the direction of the applied translational
force for A is determined by the orientation of the airframe. Expressed
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in the inertial frame 7 = {E;, Ey, E,}, the thrust direction is given by
the vector
CySHCy + SyS¢
G(n) := Res = | cyspsg —sycy | €R3 (14.8)
CyCo

where es is the unit vector with a one in the third position and zeros
elsewhere and R is given by (14.2). Note that |G(n)| = 1 since it is
the rotation of a unit vector. According to Assumption 14.1(vi), the
magnitude of the applied translational force may be modelled directly
by a control input u € R. Thus, the applied generalized force on the
coordinates £ may be written

Fe :=uG(n). (14.9)

Torques applied to the helicopter H translate into generalized forces on
the coordinates (¢,0,). The torques {I';,I's,T'3} are applied around
the axis E{, F$ and Ef, which are unit base vectors in the frame A
(cf. Figure 14.1). According to Assumption 14.1(vi), torques are rep-
resented directly as linear control inputs. The motor of the helicopter
applies a torque directly to the rotor blades B, which once again is
modelled as a linear input I'y. This in turn generates a reactionary
torque, acting on the airframe around the axis Ff, of equal magnitude
and opposite sign. Thus, the torques applied to the rigid body motion
of the airframe A, expressed in the frame A, are

I
Iy
I's — T4

while the force applied to rotate the blades, and thus appearing as a
generalized force acting on v, is +I'y. In addition to the generalized
force +I'y applied to the blades, there is a drag term —¥ (which in
equilibrium conditions exactly cancels I'y) due to the air resistance of
the rotor blades. To convert these torques into generalized forces on the
coordinates (¢,0,1,), it is necessary to apply the inverse kinematic
relationship W, to map velocities and torques expressed in the frame
A into generalized velocities and forces in the coordinates q. Thus, the
generalized forces on the n variables are

T$ Iy
T
LU ;‘; =1 r, _2F4 (14.10)

Ty 1—‘4——2
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Assuming that a good model of the drag ¥ is known, then this term
may be cancelled using I's and then I's chosen to cancel the components
of I'3 in the “yaw” control. Thus, the ideal torque input, denoted 7°,
may be thought of as a free input. In reality, the cancellation of ¥ will
be imprecise and there will always be an associated modelling error.
Let ¥ denote the best existing model of the air resistance torque and
let o; denote the residual time-signal. Thus

E:———Eo+0t

We design a control for the system based on the information ¥y and then
look at the effect of the unmodelled term o; considered as a disturbance
to the closed-loop system. Since the control design is based on an energy
perspective, it is expected that the performance of the overall controller
will still be good for moderate disturbances o and this is observed in the
simulations presented in Section 14.4. Assuming that the orientation of
the airframe remains in the region where the Euler coordinates are well
defined, then the relationship given by (14.10) is one-to-one and one can
work directly with the inputs 7 = (74, 79, 7, 7y) with the understanding
that there will be a slight perturbation present in the actual closed-loop
system

r=7"— otW,,_le4 =70 Ot€y (14.11)
The model for the full helicopter dynamics is obtained from the Euler-
Lagrange equations with external generalized forces

= _Z_F (14.12)

where F' = (F¢, 7). Since the Lagrangian function £ contains no cross
terms in the kinetic energy combining 5 with 7, the Euler Lagrange
equation (14.12) can be partitioned into dynamics for the ¢ coordinates
and the n dynamics. One obtains

mé + mges = Fe = uG(n) (14.13)
Lij+ C(n, )7 = 7 (14.14)

where the term C(n, 7)1 is referred to as the Coriolis terms and contains
the gyroscopic.and centrifugal terms associated with the n dependence
of I and can be computed using the classical equations (cf. for example
[110, Equation (6.3.12), pg. 142]). An explicit form for the Coriolis
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matrix is given in Section 14.4. If the perturbation term (14.11) is
included, then one obtains

I+ C(n,q)n =7 =1 — ose4 (14.15)

It appears that the perturbation o; enters only into the dynamics of the
fourth component v, however, due to the coupling in the inertia matrix
I, it also directly affects the dynamics of the yaw ¢. For a diagonal
inertia matrix I4 = diag(I{, 5, I§), then the influence of this term can
be seen by computing the fourth column of the inverse inertia matrix
H—l

—cpey I}

1 c2sy I3
I7h = 093 14.16
(A7 2rert | —spcpcl} (14.16)

c3(I$ + 13)

This coupling is much stronger in the case of a model helicopter than
in the case of a full sized helicopter due to the relative importance of
the inertia I? of the blades compared to the inertia I$ of the airframe
around the F¥ axis. This is the reason why many of the standard control
schemes developed for full sized helicopters (which use a separate control
loop to regulate the rotor dynamics) have not performed satisfactorily
for model helicopter applications.

14.3 Energy-based control design

In this section, a control law is proposed for the helicopter model in-
troduced in the previous section. The algorithm is based on the back-
stepping methodology [49], though several novel modifications of the
standard backstepping methodology are introduced to deal with the
particular structure encountered.

The problem considered is that of smooth path tracking. In partic-
ular, we consider a given path in the coordinates £ = (z,y, 2) and look
for a control law that manipulates the full generalized coordinates to
ensure that the path is followed. In addition to the path coordinates in
&, we add additional trajectory requirements on the yaw angle ¢(t) and
on the regulation of the rotor speed 4. The specified path is practically
motivated by the desire to regulate the position, orientation and rotor
speed of a helicopter in hover. The desired trajectories do not fit into
the standard framework for backstepping path tracking designs.
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Definition 14.1 Consider the model of a helicopter given by (14.13)
and (14.14). Let

be smooth trajectories £(t) := (&(t), §(t), 2(t)) and @(t). Let k > 0 be
a constant. The control problem considered is:

Find a feedback control action (u,7) € R* depending only
on the measurable states (é,f,iy,n) and arbitrarily many
derivatives of the smooth trajectory (£(t),$(t)) such that
the tracking error

£ := (E(t) — €(t), $(t) — B(2),¥(t) — k) € R® (14.17)
is asymptotically stable.

Two points need to be emphasised regarding the control problem as
stated. Firstly, the desired trajectory must be sufficiently smooth before
the techniques employed in the sequel may be applied. We will be
keeping in mind the problem of regulation to a set point for hover
regulation as the prime example. Secondly, the tracking error as defined
is a mixture of paths in the translation coordinates, the orientation
coordinates and derivatives of the orientation coordinates. These errors
all have different relative degrees with respect to the control inputs and
preclude the direct application of standard backstepping techniques.

Consider once again (14.13) and (14.14). It is clear that these equa-
tions are in block pure feedback form [49, pg. 61], where the first block
is (14.13). This leads one to consider a partial error in the variables
¢ = (z,y,2) and to use this to backstep, adding additional error vari-
ables as appropriate.

Consider the error

e:=&(t) — &) (14.18)

Then following the standard approach for path tracking in mechanical
systems [105, pg. 398], we consider the output

ai=¢é+e (14.19)
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The choice of « is motivated by a zero dynamics argument. That is, if
one designs a controller to drive a — 0, then the zero dynamics

a=-—a«a

are globally and asymptotically stable and ensure that the error itself
will also converge to zero.
Taking the time derivative of a and substituting for (14.13) yields

m—oa = me + meé
dt

=m(é — é) + mé
= m(é - £) — mges + G(n)u (14.20)

Formally, there is only a single input “u” present in this equation and it
is impossible to assign the desired three-dimensional stable dynamics.
The process of backstepping suggests that we consider the variables 7 as
inputs themselves. In this case, it is clear that the unit vector G(n) may
be arbitrarily assigned direction and that the control u can be used to
assign the magnitude desired for the stable dynamics required. Unfor-
tunately, such an approach brings its own problems since formally there
are now four input variables (7, u) to assign three-dimensional dynam-
ics. Moreover, solving the vector G(n) for the angles (¢, 8, ) introduces
some unpleasant non-linearities if the resulting explicit expressions are
used in a backstepping design. An indication of the complications in-
volved in an approach like this are present in the design of explicit
backstepping control of a VTOL aircraft [91, pg. 246 and references].
Rather than take this approach, we will view the vector G(n)u as a
vector in R® and carry the full expression through to the backstepping
procedure. Thus, we define an error

Br=G(nu—-X (14.21)
where
X 1= X(£,6,6,4,¢)

is a function of known signals and is chosen to assign stable dynamics
to the error . In particular, choose

X = - (m(é - £) — mge; + o) (14.22)
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Consider the storage function

So = ?ICIP = —TgaTa (14.23)

Differentiating the storage S,, one obtains

Sa = —lof* + T (G(n)u - X)
= —|a* 4+ T (14.24)

In the formal process of backstepping the error, 5; would now be differ-
entiated and stable dynamics assigned to it in turn. Such an approach
requires that time derivatives of the input u are computed. This can
be achieved by dynamically extending the input u so that it has the
same relative degree in (14.13) as the variables v. Thus, we rewrite the
helicopter dynamics, (14.13) and (14.14), and augment these dynamics
with a cascade of two integrators feeding into the control action u

mé = G(n)u — mges (14.25)
n =2 (14.26)
W= up (14.27)

g =17 =117 —17'C(n, )7 (14.28)
Uy = i = v (14.29)

where the new variable v € R along with the original generalized torques
7 are the inputs for the augmented system. Note that the v and 7
inputs now both have a relative degree of four with respect to the £
coordinates. Moreover, note that the error o has a relative degree of
three with respect to the inputs (7,v). The kinematic equations (14.26)
and (14.27) are included to display explicitly the block pure feedback
form of the equations. This occurs in three cascaded blocks, the first,
(14.25), the second, (14.26) and (14.27) and the final block, (14.28) and
(14.29).

The design error 1 is an error in the coordinates  and the control
u. It is easily seen that (; has a relative degree of two with respect
to the inputs (7,v). Recalling the additional tracking errors given in
Definition 14.1, note that (¢ — @) also has a relative degree of two while
(¥ — &) has a relative degree of one. Thus, before continuing with the
formal backstepping procedure, it is possible to augment §; with an
additional term that accounts for the tracking performance of the yaw
(p— ¢3) The final tracking error (¥ — ) will be saved until the last step
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of the design procedure. Consider the augmented design error

B=(B,(6-9)" = ( G(Zs)ﬁq;X ) € R? (14.30)
The design error 3 := B¢(v,u) can be thought of as a time-varying func-
tion of (v,u). It is a straightforward, though somewhat tedious calcula-
tion, to show that in a suitable neighbourhood of (v, u) = (¢, 0,0, ug) for
non-zero ug then the error 8 is a diffeomorphism. That is, it maps the
four variables (¢, 8,1, u) locally one-to-one into R*%. Thus, the addition
of the extra tracking condition (¢ — @) has removed the difficulty asso-
ciated with uniquely defining a trajectory for the variables v that arose
when first defining 8;. Given that the map f is locally a diffeomorphism
on the domain of interest, the Jacobian

0B
O(v,u)

is also well defined and non-singular in this domain.
Taking the time derivative of 3 yields

J(v,u) = (v,u) € R4

gt—ﬁ = J(v,u) ( v ) - ( g ) (14.31)
Note that
X =-a-mE—-£3)=mé® - (14+m)é—¢
= mé® 4 (14 m) ~ T (Gl — mges) - ¢

= X(é(B)’ ,éaéygﬂl,u)
Thus, one can define Y = Y(é(3), e ,é,f,{,n,u) by

=(5) o (5)ex

,BT(S)=C¥T§1

since the fourth coordinate of 3 is cancelled by a zero. Consider the
storage function

Observe that

1
Sﬂ = 5W|2
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then it is easily verified that
Sy =19 - o+ 67 () () -7)

Following the backstepping methodology, a third design error is defined

5p:(ﬂmm(2)—y) (14.32)

The next step is to backstep once more with the error §;. However,
before this is done, it is possible to augment the error §; with an error
to guarantee the final tracking requirement ¥ — k. Once again, the
tracking error for < is introduced when its relative degree matches the
relative degree of the design error propagated from an earlier block.

Thus, let
5:( [ )
Y-k

To simplify the following structure, define

J(n,u) == < J(%’“) g ) Y = ( Y ) (14.33)

5:(ﬂmms(z>—7)

where S € R5*® is a permutation matrix that exchanges entries four
and five of (1, 4), ensuring that the 4 and u terms match up with the
correct rows of J(n,u).

Consider the derivative of ¢

5=ﬂmms(z>+ﬂmms(z>—?

then

Though an explicit notation for the Jacobian J(7, u) is required so that
the linear dependence of the second derivatives (7, 4,%) is clearly ex-
pressed, the remaining terms in the above expressions are left as simple
time derivatives due to space restrictions. It should be noted, however,

that the evaluation of J(7,4) and ¥ depends only on known signals.
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Let r > 0 be a constant gain and define a vector Z :=
Z(£(4)7"' ’{1 E’ g?”‘” 17’ il'7u) by

zz—i(n,u)s(2)+?-ra-(g)eRS

The gain 7 > 0 is introduced to assign a rate of convergence to the ¢
error dynamics that are independent of the rates of convergence chosen
for the other error variables. The reason for this choice is related to a
robustness analysis and is discussed in Section 14.4. Consider a third
storage function

Ss = %W (14.34)

Computing the time derivative of S5 yields

d. _ 2 oT T (5 7
ESJ——T'&' —p 01 +6 (J(n,u)S(a -7

Define
- =t 0 5x5
K(n,u) := J(n,u)S o 1€ R (14.35)

It follows directly from the invertibility of J(n, ), S and I that K(n,u)
is invertible. Thus, using (14.28) and (14.29), one can write

7(71,“)5( Z ) = K(n,u) ( ; ) +7(7),u)S( _H_lc(')(ﬂaf?)f) )

Since the matrix K (n,u) is full rank and the vector (7,v) is a full rank
vector of inputs, then the non-linear contribution to the § dynamics
may be explicitly cancelled by choosing

( ’ ) = K(n,u) " T(n,u)$ ( e ) +Kln,u) 2 (1456

As a consequence of applying this control, one has
S5 = —r|6]* - B74,

Proposition 14.1 Consider the augmented dynamics of a helicopter
given by (14.25)-(14.29) and assume a desired trajectory (€,¢,k) is
given according to Definition 14.1. Then, if the closed-loop trajectory
evolves such that Fuler angle representation of the airframe orientation
remains well defined for all time t and the applied thrust u is never
zero, then the control law (7,v) given by (14.36) ensures exponential
stabilization of the tracking error € in (14.17). [ ]
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Proof 14.1 Consider the combined storage function
1
S = 5(|eiz + Sa + Sp + S5)

Recalling the definition of a, one has

e=—-e+a
Thus
1d
§a|e|2 =—le? + el (14.37)
1
= —3lel* = 3le —af + S o (14.38)

The time derivative of S is computed by substituting the above calcu-
lation along with the expressions obtained earlier for the derivatives of
Sa, Sg and S;.

. 1 1 1
$==3lef = 5le - af* + 3l = |af? + aT1 — B ~ Ty

+ BT —r|d)* - BT
_ 10 1 2 1 o 2 2
= —5lel® = Zle— af* = laf® ~ |B]* ~ 7ld
It follows that S < 0 unlesse = 0 =a = 8 = 6. Thus, by applying
Lypunov’s theorem, all the errors e, a, B and § are asymptotically stable
to zero and the desired tracking is achieved. |

14.4 Analysis and simulations

In this section, we derive the explicit equations for the helicopter based
on the development presented in Section 14.2 and present some simple
simulations indicating the performance of the proposed control algo-
rithm.

A standard assumption in modelling full sized helicopters is that
the principal axis of the inertia is aligned with the body fixed frame A
(87, pg. 557]. This is a consequence of basic design principles based on
ease of flying for a human pilot as well as ease of manufacture and is
equally valid for model helicopters that are constructed to resemble full
sized helicopters. Since the inertia associated with the main rotor disk
(considered as a rigid object attached to the airframe) is also a diagonal
matrix, the inertia matrix Iy may be written as
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(I¢ +I?) 0 0 0

. 0 B+I15 0 0

I = 0 0 g+ I
\ © 0 Lo

M0 0 0

B 0 A—2Xo 0 0

- 0 0 /\1 - /\2 - )\3 )\4

\ 0 0 A4 A4

where \y = I8+ 10, Ao =X — ¢ I3, Mg =M — A —I§ 13, M = I3
The constants \; are chosen to represent the relative ellipticity of the
inertia of H. If the inertia of the rigid object H corresponds to that
of a sphere, then both the A2 and A3 terms are zero. Similarly, if just
A3 = 0, then it indicates that the inertia around E§ and E} is equal.
From (14.5) and (14.6), it is a simple matter to compute the inertia
matrix 17,

I(n) := WIT'W,
111 /\3CQS¢C¢ —}\189 }\40961/,

_ )\36931/,61/, 122 0 —/\43¢
= oy ; A 0 (14.39)
)\4606¢ —)\451/) 0 )\4

where 117 = A\ + )\263 + )\365612/} and Ios = A\ — Ag + A3s2,.
It is of interest to look at the particular form of the Coriolis matrix
C(n,n) that accounts for all gyroscopic and centrifugal forces for the

helicopter. Following [110, pg. 142], one obtains

0 —¢ -0 0 —0s5y —¢s29 0 0
L N | v 0 4 0 A | dsog 0 00
C = . . 22
M =="1 25 _4 o o|"2 0 0 00
0 0 0 O 0 0 0 0
C3nn Csi12 C33 0
v Az | C3o1 (i gegeay 0
2 | Cs31 —¢cpeay 0 0
0 0 0 0
0  —9secy —Vcosy Caig
s -
p o[ dseey 0 Yoy Cang (14.40)
Yeosy Yy 0 Ca34

\ Csasn Cugo Cy43 0
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where
C311 = — (éswcfp + Iﬁcgsw)
C31p = - (d}szgcfp + 932¢39 + ¢c5321/,)
C313 = —C33=— (¢C§82¢ - 900621/;)
Czn = (‘1'532061% + ¢6002¢>
C3g = (¢32¢39 + 1/.1821/;)
Ciqa = Cagy = —(Osgcy + Pcosy)

Caza = (¢socy — 1/301/5) _
—C.443 = —(fi)CaSv, + Ocy)
Ciga = (—dsgcy — bcy)

£
g
[

For simplicity of notation, one may write

C(n,m) = MCi(n, 1) + A2C2(n, %) + A3C3(n, ) + AsCa(n, n)

where the matrices Cy,... ,Cy4 are defined by reference to (14.40). It
is easily verified that the matrix C; corresponds to the Coriolis matrix
for a spherical rigid body in Euler coordinates. The contributions of C,
and C3 add the corrections for the ellipsoidal nature of the helicopter
inertia, while C4 provides the contributions to the overall inertia due
to the rotation of the rotor blades. It is important to note that in
Cy4, the angular velocity of rotation of the blades enters into that part
of the matrix that contributes dynamics to the rigid body rotation of
the helicopter. Thus, it is to be expected that changes in the angular
velocity of the rotor blades will effect the rigid body dynamics of the
helicopter.

The complexity of the above expressions indicate the difficulties that
will be encountered if one attempts to model the dynamics of a heli-
copter via a black box type approach. Much of the complexity is a
consequence of the highly non-linear nature of the Euler coordinates
for rigid body rotations. However, this non-linearity is an inherent part
of the system and cannot be ignored. If one attempts to identify a
linearized model of the helicopter in the vicinity of a stationary point,
then the validity of the approximation will certainly be limited by the
non-linearity of the state space for the rotation matrices SO(3). It is
this non-linearity that generates the highly non-linear terms in (14.40).
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In this section, we are interested in analysing the performance of the
designed control law in the presence of disturbances due to unknown air
resistance forces. It is desirable to run a number of simulations to ob-
serve the effect of such disturbances on the behaviour of the helicopter.
To this end, it would be possible to simulate the entire non-linear dy-
namics of the helicopter with added perturbation terms o;. There is,
however, a simpler route available that is based on an error dynamic
analysis of the closed-loop system. This analysis actually provides a
better insight into the proposed control design. Let

(= (eT,maT,,BT,dT)T € RY

be the vector made up of all the various errors encountered during the
backstepping procedure. The error coordinates ¢ are a “linearizing” (for
the closed-loop system) set of coordinates for the unperturbed system of
(14.25)-(14.29). In fact, the error dynamics are only dimension 15 rather
than 16 (the dimension of the augmented state for (14.25)-(14.29)).
This is due to the fact that only the angular velocity of 7y is measured
as an error. The position of 7 is not regulated, and indeed, continually
increases as the rotor blades rotate. Even though the error dynamics
do not completely represent the system dynamics, they contain all the
information relevant to the analysis of the robustness of the closed-loop
system to perturbations due to unmodelled air resistance terms.

It may be verified from the development in Section 14.3 that the
closed-loop error dynamics in the absence of perturbation are linear

(=4
where
[~ 75 0 0 0 0 0 )
0 - Iz 0 0 0 O
0 -iI; -3 0 I 0 0
A=1] 0 0 0 -1 0 1 0 [eR"®®

0 0 -I3 0 -rI; 0 0
o 0 0 -1 0 -r 0
0o 0

0 0 0 0 -r

Note that the bottom right hand 5 x 5 block (associated with the ¢
dynamics) is multiplied by a scale factor of r. Thus, one may impose
a time scale separation property on the error dynamics, ensuring that
the 0 dynamics function evolve much more quickly than the other error
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dynamics. To see why this is necessary, one must study the influence
of the perturbation o; on the error dynamics. The influence of the
perturbation o; enters as an input disturbance into the linear error
dynamics. Recalling (14.11) and (14.35) then it may be directly verified
that the closed-loop error dynamics in the presence of the perturbation
can be written as

{ = AC — B(n,u)oy

where B(n,u) := diag(I10, K(n,u))e1s € R, In particular, B(n,u) is
non-zero only in the last five entries corresponding to error §. Thus,
to reduce the effect of the air resistance perturbations, it is necessary
to assign stable error dynamics for § that dominate the perturbation
effects. An important point to make here is that it is not sufficient to
simply dominate the perturbation effects observed in the regulation of the
angular velocity v of the main rotor. Rather, it is necessary to stabilize
the angular velocity of the full system dynamics despite the presence of
the perturbation. This observation helps understand why many teams
working on helicopters have had considerable trouble obtaining good
control performance with a separate control loop regulating rotor ve-
locity, no matter how tightly the rotor velocity is controlled.

To compute the matrix B(n,u), it is necessary to compute the fifth
column of K (n,u) (14.35). This is given by

—cec¢I§
1 C§S¢Ig
K(n,u)(5 = ———=J(mu) | —sgcocyl?
5 (+5) C2IaIb s 6C6Cy 13
91313 0

(I3 + 1)

where the column vector is the fifth column of Sdiag (H"l, 1). Due to
the permutation matrix S, this is just the fourth column of the inverse
inertia matrix H(_-,{;) (cf. (14.16)) with its fourth entry swapped into the
fifth entry of the above vector and a zero in the fourth entry.

From (14.30) and (14.33), it may be verified that

Jii u(eyegey)  Jis Jia 0

_ J21 u (C¢093¢) J23 J24 0
J ()= 0. —ucysg —usycs (cycg) O
1 0 0 0 0

1

0 0 0 0
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where
Jit = u(sycp — cysesgs)
Jis = u(cysy — Sysecs)
Jia = (cypsece + sys4)
Jog = u (syss + cysacy)
Jos = u (—cycp — 8y5654)
Jog = (cyS68p — SyCsp)

Tedius but direct calculations yield

010
( —ucgey (sycy — cysese) I8 — uchsyeycpld )
+u3909c1/, (C¢S¢ - S¢390¢) Ig
1 ( —ucgcy (SySg + cysecy) Ig + ucgs¢c¢s¢I§ )
—usgcgey (—cycy — syspsg) IS
(—uc2sycysell + usgcicysyll)
~(cocy13)
\ I8 + 1) )

where 019 € R0 is the zero vector with ten entries.

Apart from its evident complexity, there are two observations that
are of interest to make for B(n,u). Firstly, it is instructive to think of
the situation in regards to a full scale helicopter where the inertia of the
airframe strongly dominates that of the rotors, Ii >> Ig . In this case,
only the terms containing a component I§ contribute significantly to the
matrix B(n,u). It follows that only the last entry of B(n,u) contributes
significantly to B(n,u). Consequently, the effect of the perturbation oy
is restricted almost entirely to a variation in the v dynamics. In this
case, it is reasonable to compensate for the unknown perturbations due
to rotor drag by using a simple decoupled SISO control loop to regulate
the rotor speed. If, however, the ratio Ig /1§ is large, then all the non-
zero entries of B(n,u) will contribute non-trivial perturbations to the
dynamics and a simple SISO loop regulating rotor speed will not make
the overall control design more robust. In the case of model helicopters,
the ratio Ig/l3 ~ 0.2—0.5 and in the example considered in this chapter,
the ratio is roughly I3/I$ ~ 0.34.

The second observation is that the control input » is an integral
part of vector B. For most manoeuvres, the control u is of a magnitude
equal to roughly the mass times gravitational acceleration, since it is
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directly related to the force that supports the helicopter in flight. In the
example considered below, the control u is roughly of magnitude 180.
The scaling of the perturbation by the control u introduces considerable
problems, since even for small perturbations o the actual effect on the
error dynamics may dominate the desired dynamic response. To coun-
teract the effect of the perturbations and to stop them propagating into
the other error variables, it is necessary to scale the § error dynamics to
deal with the size perturbations encountered. In the proposed control
design, this is achieved by introducing a scaling factor r related to the
exponential rate of stability of the § error dynamics. In the simulations
that follow, we have chosen r =~ 50. Choosing r larger (of order of the
magnitude of u) allows one to tolerate larger disturbances o;, however,
imposes issues regarding achievability of control action (requiring more
aggressive control action) and issues of robustness of the error dynamic
modelling (given that the time scale separation is imposed and not nat-
ural to the system).

Parameter Value
Mass 18.085 kg
Ig 1.667 kg m?
I3 2.341 kg m?
I 1.197 kg m?
Main Rotor diameter 1.798 m
Rotor blade mass 0.250 kg
I3 0.404 kg m?
r 50

Table 14.1: Parameters of helicopter used

Two simulations have been included to give an indication of the perfor-
mance of the proposed control strategy in the presence of unmodelled
rotor drag disturbances. The parameters of the helicopter considered
are given in Table 14.1. For both simulations, the trajectory considered
was a helical trajectory with ascending verticle height. The radius of
the circle was 10 metres and the “yaw” trajectory was chosen in order
that the helicopter would follow the trajectory as if in normal flight,
i.e. flying along the helical trajectory with pilot facing forward. The
initial condition for the helicopter was chosen to be the center of the
helix at the correct height, ensuring that the initial error e and « of the
Lyapunov function would be non-zero. For simplicity’s sake, the higher
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Lyapunov Function

osl - .4 . BN -

Time offest: O

Figure 14.2: The decrease in the Lyapunov function for the case where
|0’ tl ~1

Time offset: O

Figure 14.3: The norms of the error signals that comprise the Lyapunov
function

order components of the Lyapunov function (3,4) were set to zero to
commence with. The disturbance o; was generated using filtered white
noise signal multiplied by a gain. The same basic noise signal was used
for both simulations and only the gain of the noise term was changed.

Two simulations have been included to show the effect of changing
the gain on the perturbation o;, display the performance of the control
algorithm, and provide a comparison with the results of [48]. The first
simulation, displayed in Figures 14.2 to 14.5, was completed for unity
gain. Thus

1

on of the perturbation term. Figure
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Figure 14.4: The values of the five non-zero entries of the perturbation
term B(n,u)oy

sigma

Figure 14.5: The value of o; during both simulations. The second
simulation is undertaken for the actual perturbation signal 0.05 * o;

14.2 shows the evolution of the Lyapunov function and indicates that
there is certainly a measurable effect on the evolution of the system due
to the perturbations. Nevertheless, the Lyapunov appears bounded
by 0.5 and this ensures that the error |£| < 0.5, or that the tracking
performance should be better than 50cm. In fact, since the Lyapunov
function measures all components of the error dynamics, one would
expect that the actual position error would be much smaller than this.
This is the case and is shown in Figure 14.3, which shows a scaled version
of the evolution of each of the error signals (|e|, |a|,|B],]6]). The actual
position error is the exponential error, which is non-zero to begin with
and then appears to converge exponentially to zero. Thus, it appears
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Lyapunov Function

a3s ao as 60

Time oftset: O

Figure 14.6: The decrease in the Lyapunov function for the second
simulation where actual perturbation signal is 0.050%

that the actual position error is regulated to within an error |e| < 0.05
of 5cm. To give an indication of the actual perturbation terms, Figure
14.4 shows the evolution of the non-zero entries of B(n,u).

The second simulation was undertaken for a gain of 0.05 multiplying
the value of o;. Thus

|o¢| & 0.05

This value has been chosen to compare to the results obtained in [48].
As can be seen in Figure 14.6, the resulting perturbations are effectively
negligible and the Lyapunov function appears to be monotonically de-
creasing. Tracking is achieved to within an error of lcm or less. Figure
14.7 provides a close-up of the error signals (|e|, ||, |8],|d|) and indi-
cates that the perturbation effects are still present in all the error terms,
however, the magnitude of the perturbation is negligible.

Though the present simulations have not been verified on an actual
helicopter, the fact that several different teams working in this area
world wide have had difficulties with rotor velocity regulation indicates
that this issue is important. The authors believe that the actual pertur-
bations o; encountered in practical experiments will be non-negligible
in_real applications and thus the performance of the proposed control
algorithm should be of interest in the design of robust controllers for
model helicopters.
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All erros

Figure 14.7: The values of the norms of the errors making up the Lya-
punov function for the second simulation where the actual perturbation
signal is 0.050%

14.5 Conclusions

In this chapter, we have shown that a Lagrangian model of the dynam-
ics of a helicopter, simplified to avoid considering certain aerodynamic
effects, permits a Lyapunov design of a unified path tracking control
algorithm that combines position and orientation regulation with the
regulation of the angular velocity of the rotors. The design method
uses relative degree matching and dynamic extension to overcome a
mismatch of inputs and desired tracking errors with the natural pure
feedback structure of the system. The unified design procedure leads to
a robust control design with respect to poorly modelled air resistance
terms.




Chapter 15

Newtonian helicopter
model

15.1 Introduction

In recent years, there has been growing interest within the control com-
munity on the subject of construction and control of autonomous model
helicopters and experimental helicopter platforms [66, 90, 103, 119]*. It
appears that the classical modelling and control approaches (cf. [87])
are not directly applicable due to the high actuation to inertia ratios
and the highly non-linear nature of the rotation dynamics exploited
in desired flight conditions for scale model autonomous helicopters.
This has led the community to develop an idealised non-linear dynamic
model for a scale model autonomous helicopter (cf. conference papers
(28, 62, 90, 95, 101, 103, 119] and more recently the journal papers
(93, 102]). Although the model that is becoming standard in the liter-
ature does not contain a sophisticated aerodynamic analysis and con-
cerns only the basic dynamic states of the helicopter, it is hoped that
by resolving the basic trajectory planning and control issues, it will
be possible to extend these developments to provide robust practical
controllers for scale model autonomous helicopters. The key techni-

*The authors of this chapter are Robert Mahony, Tarek Hamel, Alejandro Dzul
and Rogelio Lozano. R. Mahony is with the Department of Electrical & Computer
Systems Engineering, Monash University, Clayton, Victoria, 3800, Australia. T.
Hamel is with the Cemif, Université d’Evry, 40 rue du Pelvoux, CE 1455 Cour-
couronnes, France. A. Dzul and R. Lozano are with the Laboratory Heudiasyc, UTC
UMR CNRS 6599, Centre de Recherche de Royallieu, BP 20529, 60205 Compiégne
Cedex, France.
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cal difficulty encountered is the the presence of significant small body
forces [12, 116] leading to weakly non-minimum phase zero dynamics
for the full dynamic model [47]. This is a theoretical problem that was
also encountered in the investigation of the control of a vertical take-off
and landing jet (VTOL) (31, 35, 67, 73, 115] and [91, pg. 246.]. Un-
fortunately, the differential flatness technics applicable in the case of a
VTOL do not apply in general to a helicopter [53, 64, 66, 116]. Recent
work [102, 119] exploits the partial differential flatness properties that
do exist for the helicopter model, however, the final stabilizing control
design still relies on an approximation of the model. Most other authors
have applied a robust control design to the model obtained by ignoring
the small body forces and later analyzing the performance of the system
to ensure that for desired trajectories, the unmodelled dynamics do not
destroy the stability of the closed-loop system [28, 62, 71, 93]. Such
results either take the form of monitoring the behaviour of the system
in order to ascertain when the stability guarantees of the control design
are broken (cf. Lemma 15.1) or provide some a priori guarantees for a
restricted class of trajectories [28, 61, 93].

In this chapter, a detailed derivation of the standard non-linear
model of the helicopter is presented. Rather than model the main ro-
tor, tail rotor and airframe as a single mechanical system, their force
and torque interactions are considered and the Newtonian dynamics of
the airframe is presented. Using the standard model, a robust control
design based on robust backstepping techniques [29] is proposed. A
control Lyapunov function is derived, based on the block pure feedback
form [49] of the approximate dynamic model obtained by ignoring the
small body forces. The trajectory tracking control design is developed
independently of a local coordinate parameterisation of the helicopter
orientation, however, Euler angles are used to parameterise the final
“yaw” parameter that does not explicitly contribute to the flight tra-
jectory dynamics in the model considered. The Lyapunov function ob-
tained for the closed-loop system is used to analyse the performance
of the proposed control in tracking an arbitrary trajectory. A lemma
is given (Lemma 15.1) that monitors the performance of the control
relative to the decrease in the Lyapunov function on-line.

The chapter is arranged into six sections, including the present intro-
duction. Section 15.2 presents the the general model of the dynamics of
a scale model autonomous helicopter. Section 15.4 derives a Lyapunov
control for an approximate system based on that presented in Section
15.2 via a robust backstepping approach. Section 15.5 contains the
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main results of the chapter and presents the analysis of the closed-loop
performance of the proposed control. Section 15.6 presents a series of
experiments that show the behaviour of the closed-loop system for both
the approximate and complete dynamic models of the system.

15.2 Modeling a helicopter using Newton’s
laws

In this section, a dynamic system is proposed as a model for an au-
tonomous model helicopter in flight close to hover conditions.
Consider Figure 15.1. Denote the body or airframe of the helicopter
by the letter A. Let Z = {F,, Ey, E,} denote a right hand inertial
frame stationary with respect to the earth and such that F, denotes
the vertical direction downwards into the earth. The vector £ = (z,y, 2)
denotes the position of the centre of mass of the helicopter relative to
the frame Z. Let A = {E¢, FS,E$} be a (right hand) body fixed

direction of rotation e
)
=

Figure 15.1: Geometry of model helicopter

frame for A. We choose EY to correspond to the normal direction of
flight of the helicopter, E$ is orthogonal and in the horizontal plane,
while E§ should (hopefully) correspond with E, in normal stationary
hover conditions (cf. Figure 15.1). The orientation of the helicopter is
given by a rotation R : A — Z, where R € SO(3) is an orthogonal
rotation matrix.

The aerodynamic and centrifugal forces acting on the rotor blades are
more than 100 times stronger than the forces associated with the rigid-
ity of the rotor blades. Consequently, for a non-zero cyclic pitch input
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(angle of attack of the rotor blades adjusted cyclically each rotation),
the blades will quickly assume new trajectories that balance the aerody-
namic and centrifugal forces. The response of the rotor blades to cyclic
pitch inputs is effectively instantaneous (taking around 130° azimuth of
a single rotation [87, pg. 462], corresponding to a time constant of ap-
proximately 0.02s for a reduced scale helicopter. The balance between
aerodynamic and centrifugal forces occurs with the rotor blades lying
in a disk, termed the main rotor disk, whose orientation is not fixed
perpendicular to the hub axis of the rotor blades. Nevertheless, con-
trolling the cyclic pitch of the rotor blades results in torque control over
pitch and roll of the airframe, since tilting the main rotor disk effects
the orientation of the main lift force and generates rotational torque
around the centre of mass of the helicopter. The rotational torque ob-
tained is directly proportional to the horizontal component of the main
rotor thrust and the offset between the main rotor hub and the centre
of mass. In addition to causing a rotation, the horizontal component
of the main rotor thrust results in small sideways forces applied to the
helicopter airframe. These forces are termed as small body forces.

Clearly, the tilt of the main rotor disk is a key parameter in the
representation of the dynamics of a helicopter. The orientation of the
main rotor disk is represented classically [87] by two additional angles a;
and by, representing the longitudinal and lateral (respectively) tilt of the
rotor disk with respect to the airframe A. The angles are often termed
the flapping angles, since the tilt of the main rotor disk is associated
with a vertical flapping movement of the rotor blades while they rotate.
Thus, the longitudinal flapping angle, a;, measures the deflection of the
rotor disk associated with a rotation around E3, while the latitudinal
flapping angle, b;, measures a deflection of the rotor disk associated
with a rotation around Ef (cf. Figure 15.1).

Assumption 15.1 The main rotor blades are assumed to hinge directly
from the hub, that is, there is no hinge offset associated with rotor flap-
ping. The coning angle is not considered. It is assumed that the cyclic
longitudinal and lateral tilts of the main rotor disk are measurable and
controllable via control of the cyclic pitch and these angles are taken
directly as control inputs. The only air resistance considered is simple
drag forces opposing the rotation of the two rotors. ]

Consider the contributions to the helicopter’s motion from lift associ-
ated with the rotor disks. Denote the thrust forces for the main rotor
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and tail rotor by Ty and T respectively. These forces will act to pro-
vide both a translation force and a rotational torque due to their offset
from the centre of gravity. The tail rotor has a fixed orientation and
the thrust generated may be represented by Tr = T2E$ = (0,T2,0)T
in the body fixed frame A. The orientation of the main rotor thrust
Ty is normally expressed in terms of the lateral and longitudinal cyclic
tilt angles a; and b; (cf. Figure 15.2). The main rotor thrust may be

Figure 15.2: Orientation of the thrust vector Ths and definition of the
unit vector G := G(aq,b;). Here, 8 (the flapping angle) denotes the
maximal tilt of the rotor disk (and thus the maximal angle of vertical
flapping of each rotor during its cycle)

expressed as a vector in the body fixed frame A as follows
TM - G(al, bl)lTMl

where

— sin(ay) cos(by)
sin(b;y) cos(aq) (15.1)
— cos(aq) cos(by)

1

G(al7b1) = d(a1 bl)

(d(ay,b1) := /1 — sin?(a;)sin?(by)) is the unit vector in the direction
of the main rotor lift (cf. Figure 15.2).

The total translational force applied to the airframe A expressed in
the inertial frame Z is

f = RG(a1,b1)|Tnr| + T%Rez + mges (15.2)

where the gravitational force mges € 7 is added and the force contribu-
tion T3, and 77 discussed above are translated into the inertial frame
via the rotation R: A — 7.
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The two thrust vectors T3y and T also generate torques, 7ps and
7T, due to the respective offsets Ijs and I (cf. Figure 15.1) between the
centre of mass and the rotor hubs

™ = lM X TM = ITM]lM X G(al,bl)

’7'T=l'11><TT:Tr12JT><E§l

In addition to the forces and torques produced by the thrust forces
of the rotors, there are pure torques acting through the rotor hubs
associated with the reactive torque generated by the aerodynamic drag
on the rotors. These anti-torques are denoted Qs and Q7 for the main
and tail rotors respectively and act along the axis of the rotor hubs. It
follows that the anti-torque on the airframe is

QM = |Qum|E3, Qr=—|Qr|E3

Denote the total torque applied to the airframe A expressed in the body
fixed frame by 7. Thus

T =|TM’ [lM X G(al,bl)] +T22 [lT X E'g]
+|Qum|E3 - |Qr|E3 (15.3)
Newton’s classical equations of motion for a rigid object evolving in

SE(3) directly yield a dynamic model for a reduced scale helicopter,
where the force inputs are given by the expressions derived above

f=v, mi=f (15.4)
R=Rsk(Q), IQ=-QxIQ+7 (15.5)
where m is the total mass of the helicopter, I is the inertia of the

airframe around the centre of mass and sk : R — R3*3 takes a vector
v to the associated skew-symmetric matrix such that sk(v)w = v x w.

15.3 New dynamic model for control design

In this section, the dynamic model given by (15.4)-(15.5) is considered
and a new (equivalent) model is derived that is more convenient to work
with for the purposes of control design.

Consider solely those forces and torques engendered by the rotors.
In_the translation dynamics (15.4), the rotor forces are

F, = [Tig|RG (a1, b) + T2 Re; (15.6)



15.3. NEW DYNAMIC MODEL FOR CONTROL DESIGN 261

In the rotation dynamics equation (15.5), the torque contributions from
the rotors are

o -8, 1 ~13

=Tyl B, 0 -l |Gla,b)+| 0 |TF (15.7)
-2, 1 0 i
M M T

where Iy = (I} ,lﬁ,f, 3,) and Iy = (1%, 12, 13.) are the component repre-
sentations of I and I in A. In (15.7), taking the first two columns of
the first term along with the second term into a single matrix yields

|Tan |G (a1, b1)
=K | |Tu|G%(a1,b1) | + ko|Tum|G?

7
where
o -8, - 2,
K=| 8B 0 0 |, k=| -l (15.8)
-2, B, Ik 0

Think of the term involving K as the one that contributes the control
over the rotation dynamics, while the term involving ko is a coupling
between the translation force control and the rotation dynamics. It is
natural to introduce a set of nominal control inputs w = (w!,w?, w®)T
providing rotational control around the body fixed frame coordinate

axis via

|Ta |G (a1, b1) —a1|Tn|
w=K | |Tu|G?an,b) |~ | bilTwl (15.9)
T2 T2
T T

where the approximation G!(a1,b;) =~ —a; and G?(ay,b1) = by results
from applying the small angle assumption to the trigonometric functions
in (15.1). It is important to note that |I3,| >> |I}], |3,] and |ip| >>
|iZ],|13|. Thus, the matrix K is clearly full rank. Moreover, if [Tps| >>
0 is large (as expected in normal flight conditions), then small changes
in the cyclic tilt angles a; and b; along with the tail thrust T:,% will allow
arbitrary (though bounded) control action w.

Consider the translation force (15.6). Recall that the rotation matrix
R may be written R = [Ef ES E$], where the vectors E are expressed
in inertial frame 7 and represent the orientation of the body fixed frame
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A. One may write

|Ta |G (a1, b)
F, = E3|Tw|G%(a1,b1) + (B ES B3] | |Tw|G?(as,b1)
7

Define a nominal control, u > 0, associated with the lift force due to
the main rotor

u = —|Tar|G*(a1,b1) = Tiy (15.10)

as the component of the principal thrust in the direction E§. Let L =
[e1,e2,e2] (where e; is the unit vector with a one in the ith place)
and note that [Ef E E§] = RL. Moreover, (E$)TRL = el'L = 0.
Substituting from (15.9) and (15.10) and recalling that K is invertible
yields

F, = —uRe3 + RLK 'w (15.11)

Thus, the translation force can be written as two terms: the first is
the principal control input for the translation dynamics. It is always
directed in the negative E§ axis corresponding to the orientation of
the airframe and position control must be achieved by reorienting the
airframe. The second term is orthogonal to E§ and is expected to be
of a much smaller magnitude. It corresponds to the small body forces
exerted on the airframe when torque control is applied. Recalling the
development given above for the rotational torques and substituting
from (15.9) and (15.10), one obtains

T = w + kou

This equation clearly shows the full torque control available via the con-
trol w and the separate term due to the coupling between translational
and rotation inputs expressed as kqu.

Remark 15.1 The above representation for the rotational torque ap-
plied to the airframe is not strictly true as a model of the cyclic pitch
inputs to applied torque due to parasitic effects resulting from the me-
chanical properties of the rotor blades. In particular, the rigidity of the
rotor blades results in a small contribution to the torque applied to the
airframe_(when_the rotor disk _deforms). More importantly, the rotor
blade rigidity alters the dynamics of the flapping response of the rotor
blades, leading to a small phase offset between the applied cyclic pitch
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direction and the deformation of the main rotor disk. Furthermore,
there are effects such as the Coriolis force associated with the effective
flapping hinge that contributes to total torque applied to the airframe.
Finally, all scale model helicopters are equipped with stabilizer rotors to
slow down the dynamic response to environmental disturbances. A full
modelling of these effects is beyond the present development and the ap-
proach taken is equivalent to working with the flapping angles directly.
This is perhaps not such a bad idea in practice, if a suitable method of
measuring the flapping angles is developed, since the highly non-linear
effects associated with the rotor flapping dynamics is one of the major
blocks to effect control of scale model autonomous helicopters. |

From the above development, one obtains the following equations of
motion for a model helicopter.

E=v (15.12)
mv = —uRes + mges + RLK 'w (15.13)
R = Rsk() (15.14)
IQ = —Q x IQ + |Qarles — |Qrlez + w + kou (15.15)

15.4 Lyapunov-based tracking control design

In this section, the structure of Equations (15.12)-(15.15) is considered.
A natural choice to derive a control law for such a system is to exploit
the procedure of backstepping. Results from the analysis of a control
law of this nature are presented.

Figure 15.3 gives a block diagram representation of (15.12)-(15.15) as
an input-output system from inputs (u,w) to the position £. Note the
cascade of rotation dynamics into the input of the translation dynamics
via the block denoted coupling which is the term —uRes in (15.13).

The coupling terms RLK ~'w and kou result in feed-forward and
feedback (type) connections, which destroy the pure cascade structure
of the system. The air resistance terms are represented as input distur-
bances to the rotational dynamics.

Consider the model equations (15.12)-(15.15). We wish to fully de-
termine trajectories determining the evolution of the helicopter. The
position trajectory is a simple matter to assign. To achieve a given
trajectory, it will be necessary to manipulate the direction in which the
principal translation force u acts and this will in turn determine tra-
jectories for the pitch and roll of the helicopter. The yaw, however, is
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Figure 15.3: Cascade structure of Equations 15.12-15.15

also a free variable. To assign a trajectory to the helicopter yaw, it is
necessary to measure the yaw in some manner. To do this, we introduce
the Euler angles

which are the classical “yaw”, “pitch” and “roll” Euler angles commonly
used in aerodynamic applications [33, pg. 608]. Firstly, a rotation of an-
gle ¢ around the axes E, is applied, corresponding to “yaw”. Secondly,
a rotation of angle 6 around the rotated version of the E, axis is ap-
plied, corresponding to “pitch” of the airframe. Lastly, a rotation of
angle 1 around the axes EY is applied. This corresponds to “roll” of A
around the natural axis Ef. It should be noted that the Euler angles
n = (¢, 0,v) are not a global coordinate patch on SO(3). Indeed, when
6 > 7, then the correspondence between the Euler coordinates and the
rotation matrices in SO(3) is no longer one-to-one. Using Euler angles
to represent the system dynamics will not be a problem for manoeuvres
close to hover. The rotation matrix R := R(¢,0,1) € SO(3) represent-
ing the orientation of the airframe A relative to a fixed inertial frame
may be written! in terms of the Euler angles 7 = (¢, 6, %)

CoCp SySHCH — CyS¢p CySCh + SyS¢
R = CoS¢p SySeSp T CypCyp CySeSy — SyCy (15.17)
—8g SyCh CyCo

'The following shorthand notation for trigonometric function is used:

¢g = cos(B), sp :=sin(B)
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Let

é ‘R — R®

$:R->R
be smooth trajectories £(t) := (£(t),§(t), 2(t)) and #(t). The control
problem considered is:

Find a feedback control action (u, w!, w?, w®) depending
only on the measurable states (£, 5,17, n) and arbitrarily
many derivatives of the smooth trajectory (€(t), $(t)) such
that the tracking error

= (£(t) ~ £(8), 9(t) — (1)) € R (15.18)
is asymptotically stable for all initial conditions.
Define a partial error
81 =€) — €(1) (15.19)

comprising that part of the tracking error associated with the position
coordinates. Define a first storage function

1 1
S = 55{51 = §|5112 (15.20)

Taking the time derivative of S; and substituting for (15.12) yields

4o =sT(E-§)

dt
— &7 (v — )
where ¥ := f . Let vg denote a desired value for the velocity v. This

theoretical signal is considered as a control signal [49] entering in place
of the true velocity v and is chosen to ensure the storage function S;

decreases,

With this choice, one has

. 1 1
S1 = 5T (mvg — mv) + Eéf(m'u — muyg)

v — mug)
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The process of backstepping continues by considering a new error
d2 := mv — muy

the difference between the desired and true velocities. Thus, the deriva-
tive S; may be written as

. 1 1
S1=——I&* + =676,
m m
The second storage function considered is
1 1
=2l 2 . _ 2
S 2| 2| 5 |mv — muy
Deriving S; and recalling (15.4) yields

Sy = 6 (md — mig),
= 6;(—E§u + mges — miy),

= 6] (—uR(n)es + mges — miy)

where it is recalled that Ef = R(n)es. The backstepping process is
continued with respect to the new variables (7, u). Of course the control
u is available and could be directly assigned at this point. In preference
to such an approach, it is possible to consider a dynamic extension of
control u by a double integrator

i =14 (15.21)

Thus, both the actual control u and its first derivative u become internal
variables of a dynamic controller. The advantage of this process is that
the relative degree of the new control, 4, with respect to the position
variables, ¢, is four rather than two. This agrees with the relative
degree of the torque controls, w, with respect to the position variables,
§. Matching relative degrees of the inputs relative to the considered
outputs allows a combined assignment of the full dynamics of a higher
order error term depending on the position coordinates £ and additional
coupling terms that are generated by the backstepping procedure. A
block control assignment of this nature is better than a cascaded design,
where u is assigned directly, since it more naturally allows trade-off
between the various control objectives. In contrast, if u is assigned
at_this stage, it results in aggressive control for the translation (main
rotor lift control) compared to the control of the rotation. The approach
taken also results in algebraically less complicated equations.
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Let (n4,uq) denote the desired values of 7 and the control v and set
) 1
ugR(ng)es := mges — mvg + 62 + Edl

This assignment does not uniquely define the values of 14 and ug. This
is not a problem as the assignment fixed here is an element by element
vectorial assignment of ugR(n4)es. Intuitively, one is specifying a de-
sired direction and magnitude for the thrust associated with the main
rotor. It is clear that any such vector may be assigned, since R(nq)es
is an arbitrary rotation of a unit vector and ug provides control of the
magnitude. Indeed, the separate desired inputs 74 and u4 need never be
considered independently and it is advantageous to introduce a notation
to represent the desired vector input

) 1
Xg = ugR(ng)es = mges — mog + 62 + 551 (15.22)

In later stages of the backstepping process, it is necessary to take deriva-
tives of the desired vector direction X;. These derivatives are computed
analytically by differentiating the explicit expression on the right hand
side. One need never actually compute the value or the derivatives of
ug and ng. With the above choice, one has

. 1
&z—mﬁ—5£&+£urwmmm
The process of backstepping continues by considering a third error
63 = ugR(na)es — uR(n)es = X4 — uR(n)es (15.23)

the vectorial difference between the desired and true values of trans-
lation thrust uR(n)es and a further component, which penalizes the
yaw

es=¢—¢

The yaw component of the error term is introduced at this stage of the
backstepping procedure (rather than along with the initial error term
1) in order that the relative degree of d; and e3 with respect to the
controls % and w match. Indeed, the relative degree of each control
with respect to either error is two. With the choice of errors, d3 and €3,
the derivative of Sy may be written as

: 1
Sy = —|62|? - Eagal + 06753
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Consider the storage function
Lo L o
S3 = 503" + les]
Deriving S3 and recalling (15.14) yields

Sy = 6T (X4 — (aR(n)es + R(n)sk(R)es)) + es(d—4)  (15.24)

Consider the term associated with d3 firstly. Let (4,%4) denote the
desired values of €2 and the control derivative %. Analogously to the
case for uR(n)es, the full vectorial term

ugR(n)es + R(n)sk(Qg)es := Xq + 83 + &2 (15.25)

is assigned. Note that in this case, the value of R(n) depends on the
true value of 7 and not on a desired value. Thus, it is important that
the above equation can always be solved, for suitable 4 and €24, given
an arbitrary vector on the right hand side. Note that

Sk(Qd)eg = Qd X ez = —Sk(e;;)ﬂd

Thus, since sk(es) is rank two with entries only in the first and second
columns, (15.25) may be written as

0 10 Qf .
100 Q2 | == R(n)T (Xd+63+62) (15.26)
0 01 g

It is clear then that the full desired dynamics for the right hand side may
be assigned using only the desired signals 3, QZ and ug4. This leaves
Q3 free to control the yaw ¢. Analogously to the case for uR(n)es, once
the validity of the vectorial assignment has been determined, one need
never again work directly with the object ugR(n)es + R(n)sk(Qq)es.
Instead, we introduce a vector notation Y; to represent this value

Yy := ugR(n)es + R(n)sk(Q)es = Xy + 3 + & (15.27)

Now consider the term associated with €3 in (15.24). The desired input
into this term will be the yaw velocity of the helicopter ¢. Let ¢4 denote
the desired yaw velocity and choose

$q = ¢ — €3
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Again it is important to verify that this equation can be satisfied in
practice. This is not immediately clear, since the actual signals that
are involved in the next stage of the backstepping procedure are the
signals Q', 2, Q3 and 4. The previous analysis showed that the desired
angular velocity QZ is the only free variable available to control ba. It
is necessary to show that this is possible.

To proceed, it is necessary to recap the kinematic relationship be-
tween the Euler angles and the angular velocity of a rigid body. Such
calculations can be found in most texts on classical mechanics (cf. Gold-
stein [33]). The generalized velocities 7 = (¢, 8,%)) are related to the
angular velocity  via the standard kinematic relationship [33, pg. 609]

1 0 Sy Cy
N o— 0 — Q = -1 .
n COS(Q) CeCqp CoSy WT) Q (15 28)
Co 89Sy  S6Cy
where
—Sg 0 1
Wp:=| cosy ¢y O (15.29)
cocy —5Sy O

Replacing 1 by ng and Q by 4 one obtains

0 .91/, Cw
0 CeCyy —CoSyp Qd
Cop S¢Sy S$6Cy

) 1
= cos(0)

Note that the kinematic matrix W, still depends on the true variables
7, not the desired variables. Multiplying by ef, one obtains

. s c

ba =202+ L3 (15.30)
Co Co

Thus, in order that d}d is dependent on the free variable QZ, it is neces-

sary that 0 < % < 00, or equivalently that both

0,9 € (1; %) (15.31)

evolve within the open interval (—7/2,7/2). This corresponds to the
helicopter never turning upside down, a situation that would require a
more sophisticated understanding of dynamics of a helicopter than that
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presented in the present chapter. Thus, for the purposes of the present
chapter, we simply assume that (15.31) is valid at all times. With the
choices made above, one may rewrite (15.24) as

Sy = —|03)* — 678, — €2 + e3(¢ — da)
+07 (Yy — (wR(n)es + uR(n)sk(Q)es))  (15.32)

For the next and last stage of the backstepping algorithm, one considers
the new error terms

04 =Yy — (WR(n)es + uR(n)sk(Q)es) (15.33)
ea=6¢— ¢
With this choice, the derivative of S3 may be written as
S3 = —,(53|2 — 5?52 — 6% + 6%154 + €3€4
The storage function associated with this stage of the backstepping is
1 1
Sy = §|54|2 + 5164|2
Thus, taking the derivative of Sy yields
Sy = 6] (Ya— (iR(n)es + 2aR(n)sk(S2)es
+uR(n)(Q x €3))) + e4($ — $) (15.34)

At this stage, the actual control inputs enter into the equations through
i = i, Q via (15.15) and ¢ as seen below.

To simplify the following analysis, consider the following control in-
put transformation of (15.15). Define

W o= I X IQ+ |Qum|T es — [Qr|I ey
+I—1w +I—lkou (1535)

Since I is full rank, then this is certainly a bijective control input trans-
formation between w and w. With this choice, (15.15) becomes

Q=w (15.36)
Taking a second derivative of (15.28) yields
== W W, Q-+ W,
= W, "W W, + W,
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Thus, recalling (15.30) and multiplying by e, one obtains
i _ Tyt -1 ~1¢
¢=—eg W, W,W, ' Q+ W, Q

C11: _ Sy - Cy _
= —ef W, 'W, W, 'Q + aw2 + aw3 (15.37)

Now, (15.34) may be rewritten as
S¢ = 85 (Ya~ 2uR(n)sk(R)es — (aR(n)es — uR(n)sk(es)d))
+64(¢'S - ¢A’)
To achieve the desired control, choose

wR(n)es — uR(n)sk(e3)w = Yd — 24R(n)sk(Q)es +d3 +d4  (15.38)
p=¢—e1—e3 (15.39)
With these choices, the derivative of S5 may be rewritten as
Sy = —|04|* — 67 85 — |ea|® — eses

It remains to show that (15.38) and (15.39) can be satisfied simultane-
ously. Rewriting (15.38) analogously to (15.26)

0 u» O w!
(—u 0 0) (zb?): (15.40)
0 01 u
R(n)T (Yd — 2uR(n)sk(Q)es + d3 + 54)

Thus, as long as u # 0, the control signals w!, w? and @ are uniquely
determined by this equation. To obtain @3, one solves for (15.37),
yielding

D = §— ey — e+ el W, W, W, 10— L (15.41)
Co Co
All terms on the right hand side of this equation are known at this stage
and @° is well defined as long as (15.31) is valid.

The above process has sufficed to fully define the control inputs @?,
w2, 4% and %. Using (15.21) and (15.35), one recovers the original con-
trol inputs v and w, which of course are themselves functions of more
primitive variables of the systems including flapping angles and thrust
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components. The backstepping procedure achieves the monotonic de-
crease of the following Lyapunov function

L=851+ 852+ 53+ 5,4
This is easily verified by computing

£=S1+SQ+S3+S4

1
= =611 = 181" = 165” — lesl” ~ 164]” ~ eaf?

Recall that d; and €3 together form the original tracking error that we
wish to minimize. Thus, stabilizing the Lyapunov function must act to
achieve the desired control objective.

15.5 Analysis

In this section, we give two results, which provide useful information
on the evolution of the system given by (15.12)-(15.15) along with the
control action given by (15.40), (15.41), (15.21) and (15.35).

The control design proposed in Section 15.4 provides a control law
that guarantees robust trajectory tracking for the approximate model
equations (15.12)-(15.15). The purpose of the analysis is to show that
as long as the small body forces are sufficiently small, this control will
ensure the same properties for the full system to within a neighbourhood
of zero. Of key importance in the development is an understanding of
the underlying error dynamics. Due to the choices made in the control
law design, the error dynamics are linear dynamics perturbed by the
small body forces. Let

a = (61762’63764a633€4) S R14
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It can be verified that the error dynamics are given by

-1 itz 0o 0 o0 0
—=I3 —I3 I 0 0 o0
0 -I3 —-Is I3 0 O
0 0 -Is -Is 0 O
0 0 0 0 -1 1
0 0 0 0o -1 -1
0
R(n)Kw
mT“R(n)Kw
2m2;+—n2m+1 R(n)Kw
0
0

+ (15.42)

Note that there are no perturbation terms in the last two block entries
of the a dynamics and that these correspond to the yaw control for the
orientation of ¢. In fact, these terms are not particularly important in
the following analysis, since the control design for these terms is mostly
decoupled from the remaining errors.

In the following analysis, bounds made up of norms of the errors |d;|,
i =1,...,4 and |e3| and |e4| are used regularly. To simplify notation,
define

v = (|81, 82], 1031, 184l les], |ea]) € R®

and
x = (0], 18], 5], |4l, 1?]) € R®

Thus a bound linear in the absolute norms of the error terms may be
written as 7ly + 77y for 7 € R® 7 € R, constant vectors. The
Lyapunov function £ may be written as

1
L= §|'y[2 (15.43)

Due to the presence of the small body forces in the error equations
(15.42), then for the evolution of the true closed-loop system, the Lya-
punov function may not be monotonically decreasing. Of course if |w| is
small relative to the errors y, then one expects that the linear dynamics
in (15.42) will dominate the perturbations and the Lyapunov function
will be decreasing. The following lemma provides an analogous result
to that obtained for the linearization method of control design [35, 48].
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Lemma 15.1 Consider the dynamics defined by (15.12)-(15.15). Let
the controls w and u be given by (15.40) and (15.41) and recover the
control inputs w and u from (15.21) and (15.85). Then, the Lyapunov
function (15.43) is strictly decreasing as long as

1712 > o|w|(mo, ) (15.44)

where

m+1 2m?2+m+1
T = 071, ) 2
m

,0,0) and o = ||K||2

and L and K are constant matrices given by the physical parameters of
the helicopter (cf. [62]). [ ]

Proof 15.1 Taking the derivative of L, substituting from (15.42) and
using Holders inequality to bound the effect of the small body forces,
yields
m+1

m

L < —py* + 62| R(m) Kw]| +

om2 +m+1
+ R Kl

163|| R (n) K w]|

=~y - les|* - |ea)* + ofw|ndy

where my is given in the lemma statement. The result follows directly
from this inequality. |

Remark 15.2 The constant 0 = ||K||; measures the inverse of the
effective offset between the centre of mass of the helicopter and the cen-
ter of the rotor disk (at which point the force u is applied). Thus, o
large corresponds to a small offset and correspondingly large “small body
forces”. It is clear that in such situations the approach taken, where the
small body forces are considered as perturbations, becomes increasingly
difficult to solve. For a model helicopter, a value of 0 ~ 2 — 5 is 0b-
tained, corresponding to an offset of around 50cm-20cm. In contrast,
for a full scale helicopter, the offset may be around 2m given a value of
o= 0.5. |

15.6 Simulations

In this section, simulations for two experiments are presented. The first
experiment considered the case of stabilization of the helicopter dy-
namics to a stationary configuration given an initial offset. The second
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considered the case of trajectory tracking. The trajectory chosen for
the tracking simulations was a helix ascending in the vertical direction.
The parameters for the helicopter used are given in Table 15.1. These
values are based on measurements of the model helicopter used by
the Swiss research group at the Measurement and Control Laboratory,
ETH, Switzerland, along with estimates drawn from the literature.

Parameter Value
Mass 18.085 kg
I 1.667 kg m?
I 2.341 kg m?
I$ 1.197 kg m?
|Qum| 0.02
|Qr| c0.002
lr (-1.5,0,0) m
Im (0, 0, -0.45) m
K 0.42
g 9.80 m s—2
o 2.437

Table 15.1: Parameters of helicopter used

For all simulations, the following choice of the initial conditions was
adopted, considering the initial translational dynamics control uy =
gm = 177. Thus, the initial force input should be exactly that which
sustains the helicopter in stationary flight. The initial condition chosen
was

0
Co=6=|0], do=¢o=0
0

In the first experiment, the regulation of position or stabilization of the
helicopter was considered. The desired position £y, and 7y were chosen
to be

1
o= 2 |, ¢do=1rad

-1

Results are shown in Figures 15.4 and 15.5 and were obtained by con-
sidering the complete model including small body forces. Figure 15.4
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Figure 15.4: Position regulation of the helicopter dynamics in the pres-
ence of small body forces

illustrates the behavior of the helicopter. Figure 15.5 shows the decrease
of the Lyapunov function.

The second experiment concerned the tracking problem. In this case,
the desired trajectory was chosen as a helix ascending from a point

1
o= 2 |, do=1rd
-1

that lies above, and to the side, of the initial position of the helicopter.
The velocity of the desired trajectory was

) O.lcosq3 §
E=1 0.1sing |, ¢y=0.1
-0.15

Results are presented in Figures 15.6 and 15.7 for the full model of the
helicopter including small body forces. In the same way, Figure 15.7 is
presented to illustrate the decrease of the Lyapunov function.

The simulations indicated that the position regulation (to the desired
trajectory) is.achieved after a short transient of 50 and 100s (cf. Figure
15.4). The initial response of the perturbed system to the control ac-
tion (when the small body forces are at their largest) shows noticeable
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Figure 15.5: The Lyapunov function and its components for position
regulation in the presence of small body forces

effects of the disturbances. In contrast, during the later stages of the
convergence, the offset of the orientation angles 6 and v is negligible.
These angles, though not exactly representing the small body forces,
are closely linked to the torque input to the system. Thus, for small
angles 6 and v it follows that the small body forces are negligible.

In the case of tracking problem (cf. Figure 15.6), the asymptotic
effect of the small body forces appears to be negligible. This can be seen
in the apparent convergence of the angles 6 and ¢ in Figure 15.6. In fact,
these angles continue to oscillate but the scale of Figure 15.6 does not
show these oscillations in comparison to the transients associated with
the initial offset. Thus, the simulation illustrated by Figure 15.6 shows
once more the relative insignificance of the small body force effects when
one considers relatively slow desired trajectories.

Remark 15.3 In the case where the damping effects are much less ap-
parent, for example if the helicopter mass was an order of 10 times
lighter, then it is possible to see the oscillatory nature of the zero dy-
namics appearing in the simulations. This is shown in a companion
paper [62]. |
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Figure 15.6: Behavior of the complete helicopter dynamics for the track-
ing problem (including small body forces)

15.7 Conclusions

In this chapter, a simple model for the dynamics of a helicopter close to
hover conditions has been derived. It was shown that this model may
be written in a form that is amenable to modern non-linear control
design techniques. A backstepping control was designed based on an
approximation of the system obtained by ignoring the small body forces
associated with the torque control. An analysis was presented to show
that the Lyapunov function is monotonically decreasing for large errors
in the control objective.
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Figure 15.7: The Lyapunov function with its components, for the track-
ing problem considering the complete helicopter dynamics




Bibliography

[1]

2]

8]

[7]

8]

H. Arai and S. Tachi. Position control of a manipulator with
passive joints using dynamic coupling. IEEE Trans. Robotics and
Automation, 7(4):528-534, 1991.

H. Arai, K. Tanie, and N. Shiroma. Nonholonomic control of
a three-dof planar underactuated manipulator. IEFEE Trans.
Robotics and Automation, 14(5):681-695, 1998.

S. Arimoto and T. Nakayama. Another language for describing
motions of mechatronics systems: A nonlinear position-dependent
circuit theory. IEEE/ASME Transactions on Mechatronics, 1(2),
June 1996.

K.J. Astrom and K. Furuta. Swinging up a pendulum by energy
control. Automatica, 36(2):287-295, February 2000.

Ahmad N. Atassi and Hassan K. Khalil. A separation principle
for the stabilization of a class of nonlinear systems. IEEE Trans.
on Automatic Control, 44(9):1672-1687, 1999.

J.C. Avila-Vilchis and B. Brogliato. Nonlinear passivity-based
control for a scale model helicopter. In 26th Furopean Rotorcraft
Forum, volume CD-ROM paper 21, The Hague, The Netherlands,
2000.

J.C. Avila-Vilchis, B. Brogliato, and R. Lozano. Modélisation
d’hélicoptere. Technical Report AP 00-021, Laboratoire
d’Automatique de Grenoble, INPG, France, 2000.

J. Baillieul. Kinematically redundant robots with flexible compo-
nents. IEEE Control Systems Magazine, 13:15-21, 1993.

S.P. Berge, K. Ohtsu, and T.I. Fossen. Nonlinear tracking con-
trol of underactuated ships minimizing the cross-track error. In

281



282

[10]

[11]

[12]

[13]

[14]

[15]

[17]

[18]

BIBLIOGRAPHY

Proceedings of the IFAC Conference on Control Applications in
Marine Systems (CAMS’98), pages 141-147, Fukuoka, Japan, Oc-
tober 27-30, 1998.

D. J. Block. Mechanical design and control of the pendubot. Mas-
ter’s thesis, University of Illinois, Urbana-Champaign, IL, USA,
1996.

S. A. Bortoff. Pseudolinearization using Spline Functions with
Application to the Acrobot. PhD thesis, Dept. of Electrical and
Computer Engineering, University of Illinois, Urbana-Champaign,
IL, USA, 1992.

R. Bradley. The flying brick exposed: nonlinear control of a basic
helicopter model. Technical Report TR/MAT/RB/6, Department
of Mathematics, Glasgow Caledonian University, Scotland, U.K.,
1996.

R. W. Brockett. Asymptotic stability and feedback stabilization.
In R.S. Millman R.W. Brockett and H.J. Sussmann, editors, Dif-
ferential Geometric Control Theory, pages 181-191. Birkhauser,
1983.

B. Brogliato, R. Lozano, and I. D. Landau. New relationships
between Lyapunov functions and the passivity theorem. Interna-
tional Journal Adaptive Control and Signal Processing, 7:353-365,
1993.

F. Bullo and N. E. Leonard. Motion primitives for stabilization
and control of underactuated vehicles. In Preprints of the 4th
IFAC NOLCOS’98, volume 1, pages 133-138, Enschede, The
Netherlands, 1998.

C.I. Byrnes, A. Isidori, and J.C. Willems. Passivity, feedback
equivalence and the global stabilization of nonminimum phase

nonlinear systems. I[EEFE Transactions on Automatic Control,
36:1228-1240, 1991.

C.C. Chung and J. Hauser. Nonlinear control of a swinging pen-
dulum. Automatica, 31(6):851-862, 1995.

J. Collado, R. Lozano, and I. Fantoni. Control of convey-crane
based on passivity. In Proceedings of the American Control Con-
ference ACC’00, Chicago, USA, June 2000.



BIBLIOGRAPHY 283

[19]

20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

I. Fantoni and R. Lozano. Stabilization of the Furuta pendulum
around its homoclinic orbit. In Preprints of the 5** IFAC NOL-
C0S’01, St. Petersburg, Russia, 2001.

I. Fantoni, R. Lozano, and F. Mazenc. Control of the PVTOL air-
craft using the forwarding technique and a Lyapunov approach. In
Proceedings of the FEuropean Control Conference ECC’01, Porto,
Portugal, 2001.

I. Fantoni, R. Lozano, F. Mazenc, and A. M. Annaswamy. Stabil-
ization of a two-link robot using an energy approach. In Proceed-
ings of the European Control Conference ECC’1999, Karlsruhe,
Germany, 1999.

I. Fantoni, R. Lozano, F. Mazenc, and K. Y. Pettersen. Stab-
ilization of a nonlinear underactuated hovercraft. International
Journal of Robust and Nonlinear Control, 10:645-654, 2000.

I. Fantoni, R. Lozano, and M. W. Spong. Stabilization of the reac-
tion wheel pendulum using an energy approach. In Proceedings of
the European Control Conference ECC’01, Porto, Portugal, 2001.

I. Fantoni, R. Lozano, and M. W. Spong. Energy based con-
trol of the pendubot. IEEE Transactions on Automatic Control,
45(4):725-729, April 2000.

T. I. Fossen. Guidance and Control of Ocean Vehicles. Chichester:
John Wiley & Sons Ltd, 1994.

T. I. Fossen, J.-M. Godhavn, S. P. Berge, and K.-P. Lindegaard.
Nonlinear control of underacuated ships with forward speed com-
pensation. In Preprints of the 4* IFAC NOLCO0S’98, volume 1,
pages 121-126, Enschede, The Netherlands, 1998.

A. L. Fradkov. Swinging control of nonlinear oscillations. Int. J.
Control, 64(6):1189-1202, 1996.

E. Frazzoli, M. Dahleh, and E. Feron. Trajectory tracking con-
trol design for autonomous helicopters using a backstepping algo-
rithm. In American Control Conference ACC’00, Chicago, USA,
June 2000.

R. A. Freeman and P. V. Kokotovi¢. Robust Nonlinear Control
Design: State-space and Lyapunov techniques. Systems and Con-
trol: Foundations and Applications. Birkhauser, Boston, 1996.



284

(30]

[31]

[32]

(33]

[34]

(35]

38)

[39]

[40]

[41]

BIBLIOGRAPHY

K. Furuta, M. Yamakita, and S. Kobayashi. Swing-up control
of inverted pendulum using pseudo-state feedback. Journal of
Systems and Control Engineering, 206(6):263-269, 1992.

R. Ghanadan. Nonlinear control system design via dynamic order
reduction. In Proc. of the Conference on Decision and Control,
pages 3752-3757, Florida, USA, 1994.

J.-M. Godhavn. Topics in Nonlinear Motion Control. PhD thesis,
Department of Engineering Cybernetics, Norwegian University of
Science and Technology, Trondheim, Norway, 1997.

H. Goldstein. Classical Mechanics. Addison-Wesley Series in
Physics. Addison-Wesley, U.S.A., second edition, 1980.

J.-T. Gravdahl and O. Egeland. Compressor Surge and Rotating
Stall: Modeling and Control. Springer-Verlag London, 1990.

J. Hauser, S. Sastry, and G. Meyer. Nonlinear control design
for slightly nonminimum phase systems: Application to V/STOL
aircraft. Automatica, 28(4):665-679, 1992.

D.J. Hill. Preliminaries on passivity and gain analysis. IFEFE
CDC Tutorial Workshop on Nonlinear Controller Design using
Passivity and Small-Gain Techniques, 1994.

D.J. Hill and P.J. Moylan. Stability of nonlinear dissipative sys-
tems. IEEFE Transactions on Automatic Control, AC-21:708-711,
1976.

D.J. Hill and P.J. Moylan. Stability results for nonlinear feedback
systems. Automatica, 13:377-382, 1977.

D.J. Hill and P.J. Moylan. Connections between finite gain and
asymptotic stability. IEEE Transactions on Automatic Control,
AC-25:931-936, 1980.

D.J. Hill and P.J. Moylan. Dissipative dynamical systems:basic
input-output and state properties. J. Franklin Inst., 309:327-357,
1980.

R.A. Horn and C.R. Johnson. Matriz Analysis. Cambridge Uni-
versity Press, 1985.



BIBLIOGRAPHY 285

[42]

[43]

j44]

[45]

[46]

[47]

(48]

[49]

[50]

[52]

[53]

A. Isidori. Nonlinear Control Systems: An Introduction. 3rd ed.
Springer- Verlag Berlin, 1995.

M. Iwashiro, K. Furuta, and K. J. Astrém. Energy based control
of pendulum. In Proceedings of the 1996 IEEFE International Conf.
on Control Applications, pages 715-720, 1996.

E. Atlee Jackson. Perspectives of Nonlinear Dynamics. Cambridge
University Press, 1989.

B. Jakubczyk and W. Respondek. On the linearization of control
systems. Bull. Acad. Polon. Sci. Math., 28:517-522, 1980.

H. K. Khalil. Non-Linear Systems. Prentice Hall, Second Edition,
1996.

T. J. Koo, F. Hoffmann, H. Shim, and S. Sastry. Control design
and implementation of autonomous helicopter. In Proceedings of
the 37" IEEE Conference on Decision and Control (CDC’98),
Florida, USA, 1998.

T. J. Koo and S. Sastry. Output tracking control design of a heli-
copter model based on approximate linearization. In Proceedings
of the 37" IEEE Conference on Decision and Control (CDC’98),
Florida, USA, 1998.

M. Kirstié¢, I. Kanallakopoulos, and P. V. Kokotovié¢. Nonlinear
and Adaptative Control Design. Wiley, New York, 1995.

E. Lefeber. Tracking Control of Nonlinear Mechanical Systems.
PhD thesis, Faculty of Mathematical Sciences, University of
Twente, Enschede, The Netherlands, 2000.

N. E. Leonard. Periodic forcing, dynamics and control of under-
actuated spacecraft and underwater vehicles. In Proc. 34** IEEE
Conf. on Decision and Control, pages 3980-3985, New Orleans,
LA, 1995.

W. S. Levine. The Control Handbook. CRC Press in cooperation
with IEEE Press, 1996.

E. Liceaga-Castro, R. Bradley, and R. Castro-Linares. Helicopter
control design using feedback linearization techniques. In Proceed-
ings of the 28" Conference on Decision and Control, CDC’89,
pages 533-534, Tampa, FL, USA, 1989.



286

[54]

[55]

[56]

(57]

[58]

[59]

[60]

[61]

[62]

[63]

BIBLIOGRAPHY

F. Lin, W. Zhang, and R. D. Brandt. Robust hovering control
of a PVTOL aircraft. IEEE Transactions on Control Systems
Technology, 7(3):343-351, 1999.

Z. Lin, A. Saberi, M. Gutmann, and Y. A. Shamash. Linear
controller for an inverted pendulum having restricted travel: A
high-and-low approach. Automatica, 32(6):933-937, 1996.

R. Lozano, B. Brogliato, O. Egeland, and B. Maschke. Dissi-
pative Systems Analysis and Control: Theory and Applications.
Springer-Verlag, Communications and Control Engineering Se-
ries, London, 2000.

R. Lozano, B. Brogliato, and I. D. Landau. Passivity and global
stabilization of cascaded nonlinear systems. IEEE Transactions
on Automatic Control, 37(9):1386-1388, 1992.

R. Lozano and I. Fantoni. Passivity based control of the inverted
pendulum. In Preprints of the 4" IFAC NOLCO0S’98, volume 1,
pages 145-150, Enschede, The Netherlands, 1998.

R. Lozano, I. Fantoni, and D. J. Block. Stabilization of the in-
verted pendulum around its homoclinic orbit. Systems & Control
Letters, 40(3):197-204, 2000.

De Luca and Siciliano. Regulation of flexible arms under gravity.
IEEE Trans. on Robotics and Automation, 9(4):463-467, 1993.

R. Mahony and T. Hamel. Robust trajectory tracking for a scale
model autonomous helicopter. Submitted to International Journal
on Robotics Research, 1999.

R. Mahony, T. Hamel, and A. Dzul. Hover control via Lyapunov
control for an autonomous model helicopter. In Proceedings of
the 38" IEEE Conf. on Decision and Control, Phoenix, Arizona,
USA, 1999.

R. Mahony and R. Lozano. An energy based approach to the
regulation of a_model helicopter near to hover. In Proceedings
of the European Control Conference ECC’1999, Karlsruhe, Ger-
many, 1999.



BIBLIOGRAPHY 287

(64]

[65]

[66]

[67]

[68]

(71]

[72]

73]

R. Mahony and R. Lozano. (Almost) exact path tracking control
for an autonomous helicopter in hover manoeuvres. In Interna-
tional Conference on Robotics and Automation, ICRA2000, San
Fransisco, California, USA, 2000.

A. Makhlin. Design and control of an inverted pendulum sys-
tem. Master’s thesis, University of Illinois, Urbana-Champaign,
IL, USA, 1998.

P. Mallhaupt, B. Srinivasan, J. Levine, and D.Bouvin. A toy
more difficult to control than the real thing. In Proceedings of the
European Control Conference, ECC’97, Brussels, Belgium, July
1997.

P. Martin, S. Devasia, and Brad Paden. A different look at output
tracking: Control of a VTOL aircraft. Automatica, 32(1):101-107,
1996.

B.M. Maschke, A.J. van der Schaft, and P.C. Breedveld. An
intrinsic hamiltonian formulation of network dynamics: Non-
standard poisson structures and gyrators. J. Franklin Inst.,
329:923-966, 1992.

F. Mazenc. Stabilisation de trajectoires, ajout d’intégration, com-
mande saturées. PhD thesis, Ecole des Mines de Paris, 1996.

F. Mazenc, A. Astolfi, and R. Lozano. Lyapunov function for the
ball and beam: Robustness property. In Proceedings of the 38"
IEEFE Conf. on Decision and Control, Phoenix, Arizona, USA,
Dec. 1999.

F. Mazenc, R. Mahony, and R. Lozano. Forwarding control of
reduced scale autonomous helicopter: A Lyapunov control design.
Draft version.

F. Mazenc and L. Praly. Adding integrations, saturated controls,
and stabilization for feedforward systems. IEEE Transactions on
Automatic Control, 41(11):1559-1578, November 1996.

R. M. Murray, M. Rathinam, and M. van Nieuwstadt. An in-
troduction to differential flatness of mechanical systems. In Pro-
ceedings of “Ecole d’Eté, Théorie et pratique des systémes plats”,
Grenoble, France, 1996.



288

[74]

[75]

[76]

[77]

[78]

[79]

(80]

(81]

BIBLIOGRAPHY

Y. Nakamura, T. Suzuki, and M. Koinuma. Nonlinear behav-
ior and control of a nonholonomic free-joint manipulator. IEEE
Trans. on Robotics and Automation, 13(6):853-862, 1997.

H. Nijmeijer and A. J. van der Schaft. Nonlinear Dynamical Con-
trol Systems. Springer-Verlag, 1990.

R. Olfati-Saber. Nonlinear Control of Underactuated Mechani-
cal Systems with Application to Robotics and Aerospace Vehicles.
PhD thesis, Department of Electrical Engineering and Computer
Science of the Massachusetts Institute of Technology, Cambridge,
USA, 2001.

R. Olfati-Saber. Fixed point controllers and stabilization of the
cart-pole system and the rotating pendulum. In Proceedings of
the 38" IEEE Conf. on Decision and Control, pages 1174-1181,
Phoenix, Arizona, USA, Dec. 1999.

R. Olfati-Saber. Cascade normal forms for underactuated me-
chanical systems. In Proceedings of the 39" IEEE Conf. on De-
cision and Control, Sydney, Australia, Dec. 2000.

R. Olfati-Saber. Global configuration stabilization for the VTOL
aircraft with strong input coupling. In Proceedings of the 39"
IEEE Conf. on Decision and Control, Sydney, Australia, Dec.
2000.

G. Oriolo and Y. Nakamura. Control of mechanical systems with
second-order nonholomic constraints: Underactuated manipula-
tors. In Proc. 30" IEEE Conf. on Decision and Control, pages
2398-2403, Brighton, England, 1991.

K. Y. Pettersen. Ezponential stabilization of underactuated vehi-
cles. PhD thesis, Department of Engineering Cybernetics, Nor-
wegian University of Science and Tecnology, Trondheim, Norway,
1996.

K. Y. Pettersen and O. Egeland. Exponential stabilization of an
underactuated surface vessel. In Proceedings 35th IEEE Conf. on
Decision and Control, pages 967-971, 1996.

K. Y. Pettersen and T. I. Fossen. Underactuated ship stabilization
using integral control: experimental results with cybership i. In



BIBLIOGRAPHY 289

[84]

(85]

[86]

[87]

(88]

[91]

[92]

(93]

[94]

Preprints of the 4" IFAC NOLC0S’98, volume 1, pages 127-132,
Enschede, The Netherlands, 1998.

K. Y. Pettersen and H. Nijmeijer. Tracking control of an under-
actuated surface vessel. In Proc. 37%" IEEE Conf. on Decision
and Control, CDC 98, pages 4561-4566, December 1998.

K. Y. Pettersen and H. Nijmeijer. Global practical stabilization
and tracking for an underactuated ship - a combined averaging
and backstepping approach. In Proc. IFAC Conference on System
Structure and Control, pages 59-64, July 1998.

L. Praly. Stabilisation du systéme pendule-chariot: Approche par
assignation d’énergie. personal communication, 1995.

R. W. Prouty. Helicopter Performance, Stability and Control.
Krieger Publishing Company, 1995.

M. Reyhanoglu, A. J. van der Schaft, N. H. McClamroch, and
I. Kolmanovsky. Dynamics and control of a class of underactuated
mechanical systems. IEEE Transactions on Automatic Control,
44(9):1663-1671, 1999.

Ch. Rui, I. Kolmanovsky, and P.J. McNally. Attitude control
of underactuated multibody spacecraft. In IFAC, 13th Triennial
World Congress, pages 425-430, San Francisco, USA, 1996.

W. Schaufelberger and H. Geering. Case study on helicopter con-
trol. In Control of Complex Systems (COSY) Symposium (Invited
session), Macedonia, October, 1998.

R. Sepulchre, M. Jankovi¢, and P. Kokotovié. Constructive Non-
linear Control. Springer-Verlag London, 1997.

D. Seto and J. Baillieul. Control problems in super-articulated
mechanical systems. IEEE Transactions on Automatic Control,
39:2442-2453, 1994.

O. Shakernia, Y. Ma, T. Koo, and S. Sastry. Landing an un-
manned air vehicle: Vision based motion estimation and nonlinear
control. Asian Journal of Control, 1(3):128-145, 1999.

I. H. Shames. Engineering Mechanics: Dynamics. Prentice Hall
International, 1967.



290

95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

BIBLIOGRAPHY

H. Shim, T. Koo, F. Hoffmann, and S. Sastry. A comprehensive
study of control design for an autonomous helicopter. In Proceed-
ings of the 37" Conference on Decision and Control CDC’98,
1998.

A. S. Shiriaev. Control of oscillations in affine nonlinear systems.
In Proc. IFAC conference “System Structure and Control”, pages
789-794, Nantes, France, 1998.

A. S. Shiriaev. The notion of v-detectability and stabilization of
invariant sets of nonlinear systems. In Proc. 37" IEEE Conf.
on Decision and Control, CDC 98, pages 2509-2514, Tampa, FL,
USA, December 1998.

A. S. Shiriaev, O. Egeland, and H. Ludvigsen. Global stabilization
of unstable equilibrium point of pendulum. In Proceedings of the
37t IEEE Conf. on Decision and Control, CDC 98, Tampa, FL,
USA, 1998.

A. S. Shiriaev and A. L. Fradkov. Stabilization of invariant man-
ifolds for nonlinear non-affine systems. In Preprints of the 4"
IFAC NOLCOS’98, pages 215-220, Enschede, The Netherlands,
1998.

A. S. Shiriaev, A. Pogromsky, H. Ludvigsen, and O. Egeland. On
global properties of passivity-based control of an inverted pen-
dulum. International Journal of Robust and Nonlinear Control,
10:283-300, April 2000.

A. Sira-Ramirez, R. Castro-Linares, and E. Licéaga-Castro. Reg-
ulation of the longetudinal dynamics of an helicopter system: A
Liovillian systems approach. In Proceedings of the American Con-
trol Conference ACC’99, San Diego, California, USA, 1999.

A. Sira-Ramirez, R. Castro-Linares, and E. Licéaga-Castro. A
Liouvillian systems approach for the trajectory planning-based
control of helicopter models. International Journal of Robust and
Nonlinear Control, 10:301-320, 2000.

A. Sira-Ramirez, M. Zribi, and S. Ahmed. Dynamic sliding mode
control approach for vertical flight regulation in helicopters. IEE
Proceedings: Control Theory and Applications, 141(1):19-24, Jan-
uary 1994.



BIBLIOGRAPHY 291

[104]

[105)

[106]

[107)

[108]

[109]

[110]

[111]

[112]

[113)

[114]

[115]

H. Sira-Ramirez and R. Castro-Linares. On the regulation of a
helicopter system: A trajectory planning approach for the Liou-
villian model. In Proceedings of the European Control Conference
ECC’1999, 1999.

J. Slotine and W. Li. Applied nonlinear control. Prentice Hall,
1991.

M. W. Spong. The swing up control of the acrobot. In IEEFE Int.
Conf. on Robotics and Automation, San Diego, CA, 1994.

M. W. Spong and D. J. Block. The pendubot: A mechatronic
system for control research and education. In Proceedings of the
34" IEEE Conf. on Decision and Control, 1995.

M. W. Spong, P. Corke, and R. Lozano. Nonlinear control of the
reaction wheel pendulum. To appear in Automatica, 2001.

M.W. Spong and L. Praly. Control of underactuated mechanical
systems using switching and saturation. In Proceedings of the
Block Island Workshop on Control Using Logic Based Switching,
1996.

M.W. Spong and M. Vidyasagar. Robot Dynamics and Control.
John Wiley & Sons, Inc., 1989.

W. Z. Stepniewsky. Rotor-wing Aerodynamics, Vol. 1 Basic Theo-
ries of Rotor Aerodynamics. Dover Publishing., Inc., N. Y., 1984,

J. P. Strand, K. Ezal, T. I. Fossen, and P. V. Kokotovic. Nonlinear
control of ships: a locally optimal design. In Preprints of the 4
IFAC NOLCOS’98, Enschede, The Netherlands, 1998.

M. Takegaki and S. Arimoto. A new feedback method for dynamic
control of manipulators. Trans. ASME, J. Dyn. Systems, Meas.
Control, 103:119-125, 1981.

F. Tchen-Fo, C. Allain, and A. Desopper. Improved vortex ring
model for helicopter pitch up prediction. In 26th European Rotor-
craft Forum, volume CD-ROM paper 42, The Hague, The Nether-
lands, 2000.

Andrew R. Teel. A nonlinear small gain theorem for the anal-
ysis of control systems with saturation. IEEE Transactions on
Automatic Control, 41(9):1256-1270, 1996.



292

[116]

[117]

[118]

[119]

[120]

[121)

[122]

[123]

BIBLIOGRAPHY

D. Thomson and R. Bradley. Recent develoments in the calcu-
lation of inverse dynamic solutions of the helicotper equations of
motion. In Proceedings of the U.K. Simulation Council Triennial
Conference, 1987.

A. J. van der Schaft. Ly-Gain and Passivity Techniques in Non-
linear Control. Springer-Verlag, 1996.

M. van Nieuwstadt and J. Morris. Control of rotor speed for a
model helicopter: A design cycle. In Proceedings of the American
Control Conference, pages 688-692, 1995.

M. van Nieuwstadt and R. Murray. Outer flatness: Trajectory
generation for a model helicopter. In Proceedings of the European
Control Conference ECC’97, Brussels, Belgium, 1997.

F. Verduzco and J. Alvarez. Stability and Bifurcations of an Un-
deractuated Robot Manipulator. CICESE, Mexico.

Q. Wei, W.P. Dayawansa, and W.S. Levine. Nonlinear controller
for an inverted pendulum having restricted travel. Automatica,
31(6):841-850, 1995.

J.C. Willems. Dissipative dynamical systems - part 1: General
theory. Arch. Rational Mechanics and Analysis, 45:321-351, 1972.

M. Yamakita, M. Iwashiro, Y. Sugahara, and K. Furuta. Ro-
bust swing up control of double pendulum. In Proceedings of the
American Control Conference, pages 290-295, Seattle, Washing-
ton, 1995.



Index

aerodynamic forces and torques,
197
asymptotic stability, 12

backstepping scheme, 237, 263
ball and beam system, 144
Barbalat’s lemma, 164

Barbashin-LaSalle’s  theorem,
13

Bell X-22A V/STOL aircraft,
174

Brockett’s necessary condition,
15, 163

cart-pole system, 23
contraints
holonomic, 17
non-holonomic, 18
controllability, 28, 59, 78, 93,
110, 161
convey-crane system, 43
coordinate transformation, 161

damping matrix, 158
degree of freedom, 18
dissipation inequality, 14
dissipative systems
definition, 14

equivalent closed-loop intercon-
nection, 112, 136
Euler angles
pitch, 231, 264
roll, 231, 264

293

yaw, 231, 264
Euler-Lagrange equations, 25,
56, 76, 91, 109, 121,
132, 145, 159, 212, 236
experimental results
inverted pendulum, 38
pendubot, 68
exponential stability, 12, 166

feedback linearization, 94
flight modes
forward flight, 197
hover, 196
vertical flight, 196
forwarding, 182
Furuta pendulum, 74

global stability, 13

helicopter, 197, 228, 257

helicopter blades, 206

helicopter-platform, 210

homoclinic orbit, 19, 29, 60, 80,
96, 99, 104

hovercraft, 157

IGE, 196

inertia matrix, 234

interconnection
feedback, 114, 138

invariant set, 13

inverted pendulum, 23

Kalman-Yakubovich-Popov



294

lemma, 113, 138
PR system, 113, 137
kinetic energy, 25, 55, 75, 90,
132, 144
kinetic energy
rotational, 233
translational, 232
Krasovskii-LaSalle’s  invariant
set theorem, 13

Lagrangian, 25, 55, 91, 132, 145,
159, 212, 234
Lagrangian helicopter model,
225
LaSalle’s invariance principle,
13, 32, 64, 83, 95, 98,
113, 123, 138, 148, 163
LaSalle’s theorem, 13
linearized system, 29, 60, 80, 94,
111, 162
local stability, 12
Lyapunov
direct method, 12
function, 12
Lyapunov function, 29, 61, 95,
97, 112, 122, 135, 148,
162, 163, 165, 166, 180,
184, 187, 189, 272

main rotor drag torque, 198
mobile robot, 18

navy assault hovercraft, 156

negative definiteness, 12

negative semi-definiteness, 12

Newton’s laws, 257

Newton’s second law, 24

Newtonian helicopter model,
255

non-holonomic systems, 17

OGE, 196, 197, 209

INDEX

passivity, 14, 27, 58, 78, 92, 111,
135, 147, 215
passivity
definition, 14
input strict, 15
output strict, 15
very strict, 15
PD controller, 112, 122, 147
pendubot, 54
pitching moment, 198
planar PPR robot, 131
positive definiteness, 12
positive semi-definiteness, 12
potential energy, 25, 56, 75, 91,
145, 212, 234
prismatic joints, 129
PVTOL aircraft, 175

reaction wheel pendulum, 90
revolute joint, 130

revolute joints, 129

rolling moment, 198

Silverman’s criterion, 162

skew-symmetric matrix, 27, 57,
77, 110, 122, 134, 146,
213, 215

SPR transfer function, 114, 138

spring, 109, 121

stability, 12

stiffness matrix, 109, 121

supply rate, 14

surge, 159

sway, 159

tail rotor drag torque, 198

three-link underactuated planar
robot, 120

torsional spring, 130

two-link underactuated planar
robot, 108



INDEX

underactuated systems, 18
underactuated vehicles, 157

yaw, 159
yaw moment, 198

295




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




